14.某木材加工廠為了提高生產(chǎn)效率和產(chǎn)品質(zhì)量,決定添置一臺12.5萬元的新木材加工機(jī)器.若機(jī)器第x天的維護(hù)費為x元,則該機(jī)器使用多少天能使平均每天的支出最少?

分析 確定每天的維護(hù)費數(shù)量,可得總維護(hù)費,進(jìn)而可得總支出費、平均每天的支出,利用基本不等式,即可求得結(jié)論.

解答 解:設(shè)機(jī)器使用x天最經(jīng)濟(jì),則機(jī)器每天的維護(hù)費數(shù)量為1,2,3,…,x(元)
這是一個等差數(shù)列,總維護(hù)費為$\frac{x(x+1)}{2}$(元)總支出費為125000+$\frac{x(x+1)}{2}$(元)
平均每天的支出為$y=\frac{{125000+\frac{x(x+1)}{2}}}{x}=\frac{125000}{x}+\frac{x}{2}+\frac{1}{2}$$≥2\sqrt{\frac{125000}{x}•\frac{x}{2}}+\frac{1}{2}=\frac{1001}{2}$當(dāng)且僅當(dāng)$\frac{125000}{x}=\frac{x}{2}$,即x=500時等號成立.
答:該機(jī)器使用500天能使平均每天的支出最少.

點評 本題考查函數(shù)模型的構(gòu)建,考查基本不等式,正確確定函數(shù)解析式是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(x+2a)-ax,a>0.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)記f(x)的最大值為M(a),若a2>a1>0且M(a1)=M(a2),求證:${a_1}{a_2}<\frac{1}{4}$;
(Ⅲ)若a>2,記集合{x|f(x)=0}中的最小元素為x0,設(shè)函數(shù)g(x)=|f(x)|+x,求證:x0是g(x)的極小值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.為了得到函數(shù)y=3cos2x,x∈R的圖象,只需要把函數(shù)y=3cos(2x+$\frac{π}{5}$),x∈R的圖象上所有的點( 。
A.向左平移$\frac{π}{5}$個單位長度B.向右平移$\frac{π}{5}$個單位長度
C.向左平移$\frac{π}{10}$個單位長度D.向右平移$\frac{π}{10}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,圓A:(x+1)2+y2=16,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(1)證明:|EA|+|EB|為定值,并寫出點E的軌跡方程;
(2)設(shè)點E的軌跡為曲線C,直線l交C1于M,N兩點,過B且與l垂直的直線與元A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x|x2<1},N={x|x≥0},則M∩N=( 。
A.{x|0<x<1}B.{x|0≤x<1}C.{x|x≥0}D.{x|-1<x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線y=x+1與曲線y=alnx相切,若a∈(n,n+1)(n∈N*),則n=( 。▍⒖紨(shù)據(jù):ln2≈0.7,ln3≈1.1)
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式x(2-x)≥0的解集是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,∠ABC=$\frac{π}{2}$,D是棱AC的中點,且AB=BC=BB1=4.
(Ⅰ)求證:AB1∥平面BC1D;    
(Ⅱ)求異面直線AB1與BC1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果集合A={x|ax2+2x+1=0}中只有一個元素,則a的值是( 。
A.0B.0 或1C.1D.0 或1或-1

查看答案和解析>>

同步練習(xí)冊答案