【題目】2019年高考數(shù)學(xué)的全國Ⅲ卷中,文科和理科的選做題題目完全相同,第22題考查選修4-4:極坐標和參數(shù)方程;第23題考查選修4-5:不等式選講.某校高三質(zhì)量檢測的命題采用了全國Ⅲ卷的形式,在測試結(jié)束后,該校數(shù)學(xué)組教師對該校全體高三學(xué)生的選做題得分情況進行了統(tǒng)計,得到兩題得分的列聯(lián)表如下(已知每名學(xué)生只做了一道題):

選做22

選做23

合計

文科人數(shù)

50

60

理科人數(shù)

40

總計

400

1)完善列聯(lián)表中的數(shù)據(jù),判斷能否有的把握認為“選做題的選擇”與“文、理科的科類”有關(guān);

2)經(jīng)統(tǒng)計,第23題得分為0的學(xué)生中,理科生占理科總?cè)藬?shù)的,文科生占文科總?cè)藬?shù)的,在按分層抽樣的方法在第23題得分為0的學(xué)生中隨機抽取6名進行單獨輔導(dǎo),并在輔導(dǎo)后隨機抽取2名學(xué)生進行測試,求被抽中進行測試的2名學(xué)生均為理科生的概率.

附:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

【答案】1)列聯(lián)表見解析,沒有;(2.

【解析】

1)先根據(jù)列聯(lián)表中的數(shù)據(jù)求出其它未知數(shù),計算卡方,根據(jù)附表進行判斷;

2)先根據(jù)抽樣方法確定理科和文科的人數(shù),然后結(jié)合古典概率的求解方法可得概率.

1)根據(jù)題意填寫列聯(lián)表如下:

選做22

選做23

合計

文科人數(shù)

50

10

60

理科人數(shù)

350

40

390

總計

400

50

450

由表中數(shù)據(jù),計算.

對照臨界值表得,沒有的把握認為“選做題的選擇”與“文、理科的科類”有關(guān);

2)由分層抽樣的方法可知在被選取的6名學(xué)生中理科生有4名,文科生有2名,記4理科生為,2名文科生為,

從這6名學(xué)生中隨機抽取2名,基本事件是:,,,,,,,,,,,15種,

被抽中的2名學(xué)生均為理科生的基本事件為,,,,,6種,故所求的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.

其中正確命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中為自然對數(shù)的底數(shù).

1)若在定義域上是增函數(shù),求的取值范圍;

2)若直線是函數(shù)的切線,求實數(shù)的值;

3)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,P,Q分別為棱BC和棱CC1的中點,則下列說法正確的是( )

A.BC1//平面AQP

B.平面APQ截正方體所得截面為等腰梯形

C.A1D⊥平面AQP

D.異面直線QPA1C1所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是(

A.展開式中奇數(shù)項的二項式系數(shù)和為256

B.展開式中第6項的系數(shù)最大

C.展開式中存在常數(shù)項

D.展開式中含項的系數(shù)為45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(1)若拋物線的焦點在圓上,且和圓 的一個交點,求

(2)若直線與拋物線和圓分別相切于點,求的最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紋樣是中國傳統(tǒng)文化的重要組成部分,它既代表著中華民族的悠久歷史、社會的發(fā)展進步,也是世界文化藝術(shù)寶庫中的巨大財富.小楠從小就對紋樣藝術(shù)有濃厚的興趣.收集了如下9枚紋樣微章,其中4枚鳳紋徽章,5枚龍紋微章.小楠從9枚徽章中任取3枚,則其中至少有一枚鳳紋徽章的概率為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都乘以同一個非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a

B.設(shè)有一個回歸方程,變量x增加1個單位時,y平均減少5個單位

C.線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱

D.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N1σ2)(σ0),則Pξ1)=0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD外切于,△ACB的內(nèi)切圓與邊AB、BC的切點分別為P、Q,,△ACD的內(nèi)切圓與邊CD、DA的切點分別為R、S. 求證:三條直線PQ、RS、AC共點或平行.

查看答案和解析>>

同步練習(xí)冊答案