【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是( )
A.展開式中奇數(shù)項的二項式系數(shù)和為256
B.展開式中第6項的系數(shù)最大
C.展開式中存在常數(shù)項
D.展開式中含項的系數(shù)為45
【答案】BCD
【解析】
由二項式的展開式中第5項與第7項的二項數(shù)系數(shù)相等可知,由展開式的各項系數(shù)之和為1024可得,則二項式為,易得該二項式展開式的二項式系數(shù)與系數(shù)相同,利用二項式系數(shù)的對稱性判斷A,B;根據(jù)通項判斷C,D即可.
由二項式的展開式中第5項與第7項的二項數(shù)系數(shù)相等可知,
又展開式的各項系數(shù)之和為1024,即當(dāng)時,,所以,
所以二項式為,
則二項式系數(shù)和為,則奇數(shù)項的二項式系數(shù)和為,故A錯誤;
由可知展開式共有11項,中間項的二項式系數(shù)最大,即第6項的二項式系數(shù)最大,
因為與的系數(shù)均為1,則該二項式展開式的二項式系數(shù)與系數(shù)相同,所以第6項的系數(shù)最大,故B正確;
若展開式中存在常數(shù)項,由通項可得,解得,故C正確;
由通項可得,解得,所以系數(shù)為,故D正確,
故選: BCD
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
(3)求三棱錐C-BGF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個人上臺階可以一次上1級臺階,也可以一次上3級臺階,或者一次上4級臺階.若這個人上級臺階總共有種走法,證明為平方數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設(shè)計的,那么在兩個判斷框中,可以先后填入( )
A. 是偶數(shù)?,? B. 是奇數(shù)?,?
C. 是偶數(shù)?, ? D. 是奇數(shù)?,?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有2個紅球,1個黃球和1個藍球(這些小球除顏色外大小形狀完全相同),從中隨機一次性取2個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:
①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機會;
②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機會;
③若取得的2個小球都是紅球,則該顧客中得一等獎,獎金是一個10元的紅包;
④若取得的2個小球都不是紅球,則該顧客中得二等獎,獎金是一個5元的紅包;
⑤若取得的2個小球只有1個紅球,則該顧客中得三等獎,獎金是一個2元的紅包.
抽獎活動的組織者記錄了該超市前20位顧客的購物消費數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.
(1)求這20位顧客中獲得抽獎機會的人數(shù)與抽獎總次數(shù)(假定每位獲得抽獎機會的顧客都會去抽獎);
(2)求這20位顧客中獎得抽獎機會的顧客的購物消費數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);
(3)分別求在一次抽獎中獲得紅包獎金10元,5元,2元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的最小值;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,設(shè)函數(shù),若存在區(qū)間,使得函數(shù)在上的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“水資源與永恒發(fā)展”是2015年聯(lián)合國世界水資源日主題.近年來,某企業(yè)每年需要向自來水廠繳納水費約4萬元,為了緩解供水壓力,決定安裝一個可使用4年的自動污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(單位:萬元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為0.2.為了保證正常用水,安裝后采用凈水裝置凈水和自來水廠供水互補的用水模式.假設(shè)在此模式下,安裝后該企業(yè)每年向自來水廠繳納的水費 C(單位:萬元)與安裝的這種凈水設(shè)備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是(x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設(shè)備的費用與該企業(yè)4年共將消耗的水費之和.
(1) 試解釋的實際意義,請建立y關(guān)于x的函數(shù)關(guān)系式并化簡;
(2) 當(dāng)x為多少平方米時,y取得最小值?最小值是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)求b的值,判斷并用定義法證明f(x)在R上的單調(diào)性;
(2)解不等式f(2x+1)+f(x)<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com