16.已知向量$\overrightarrow{m}$=(1,1),向量$\overrightarrow{n}$與向量$\overrightarrow{m}$夾角為$\frac{3}{4}$π,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1,則|$\overrightarrow{n}$|=1.

分析 根據(jù)平面向量數(shù)量積的定義與模長(zhǎng)公式,列出方程求出|$\overrightarrow{n}$|的值.

解答 解:向量$\overrightarrow{m}$=(1,1),∴|$\overrightarrow{m}$|=$\sqrt{2}$,
又向量$\overrightarrow{n}$與向量$\overrightarrow{m}$夾角為$\frac{3}{4}$π,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1,
∴|$\overrightarrow{m}$|×|$\overrightarrow{n}$|×cos$\frac{3π}{4}$=$\sqrt{2}$×|$\overrightarrow{n}$|×(-$\frac{\sqrt{2}}{2}$)=-1,
解得|$\overrightarrow{n}$|=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了平面向量數(shù)量積的定義與模長(zhǎng)公式的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)計(jì)程序框圖,計(jì)算1×2×3×4×…×n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若不等式ax2+bx+c>0的解集為{x|2<x<3},則不等式cx2-bx+a>0的解集為{x|$-\frac{1}{2}$<x<-$\frac{1}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,長(zhǎng)軸長(zhǎng)為4,焦點(diǎn)在x軸上,斜率為1的直線l與橢圓C相交于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程
(2)求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≥1}\\{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,則x+y取得最小值時(shí)的最優(yōu)解的個(gè)數(shù)是( 。
A.1B.2C.3D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知復(fù)數(shù)$z=\frac{1-3i}{1+i}$,則復(fù)數(shù)z的虛部為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)f(x)=x2-|x|+a-1的圖象與x軸有四個(gè)交點(diǎn),則a的取值范是(1,$\frac{5}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于f(x)的命題:
①函數(shù)f(x) 在x=0,4處取到極大值;
②函數(shù)f(x)在區(qū)間[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a不可能有3個(gè)零點(diǎn).
其中所有真命題的序號(hào)是( 。
A.①②B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+m({x+1})+lnx$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)存在兩個(gè)極值點(diǎn)α,β,且α<β,若f(α)<b+1恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案