【題目】“新車嗨翻天!首付3000元起開新車”這就是毛豆新車網(wǎng)打出來的廣告語.某人看到廣告,興奮不已,計劃于2019年1月在該網(wǎng)站購買一輛某品牌汽車,他從當?shù)亓私獾浇鍌月該品牌汽車實際銷量如表:
月份 | 2018.08 | 2018.09 | 2018.10 | 2018.11 | 2018.12 |
月份編號t | 1 | 2 | 3 | 4 | 5 |
銷量y(萬輛) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析,可用線性回歸模型擬合當?shù)卦撈放破噷嶋H銷量y(萬輛)與月份編號t之間的相關關系.請用最小二乘法求y關于t的線性回歸方程,并估計2019年1月份該品牌汽車的銷量:
(2)為了增加銷量,廠家和毛豆新車網(wǎng)聯(lián)合推出對購該品牌車進行補貼.已知某地擬購買該品牌汽車的消費群體十分龐大,某調(diào)研機構對其中的200名消費者的購車補貼金額的心理預期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
補貼金額預期值 區(qū)間(萬元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
將頻率視為概率,現(xiàn)用隨機抽樣方法從該地區(qū)擬購買該品牌汽車的所有消費者中隨機抽取3人,記被抽取3人中對補貼金額的心理預期值不低于3萬元的人數(shù)為ξ,求ξ的分布列及數(shù)學期望E(ξ)
參考公式及數(shù)據(jù):①回歸方程,其中,;②.
【答案】(1)y關于t的線性回歸方程為y=0.32t+0.08,2019年1月份當?shù)卦撈放菩履茉雌嚨匿N量約為2萬輛(2)詳見解析
【解析】
(1)分別求得,進而求得,再代入樣本中心點求即可.
(2)根據(jù)二項分布定理求解分布列與數(shù)學期望即可.
(1),,
,,
則y關于t的線性回歸方程為y=0.32t+0.08,
當t=6時,y=2.00,
即2019年1月份當?shù)卦撈放菩履茉雌嚨匿N量約為2萬輛.
(2)根據(jù)給定的頻數(shù)表可知,任意抽取1名擬購買該品牌汽車的消費者,對補貼金額的心理預期值
不低于3萬元的概率為0.6,
由題意可知ξ~(3,0.6),
P(ξ=0)0.064,
P(ξ=1)0.288,
P(ξ=2)0.432,
P(ξ=3)0.216,
分布列為:
ξ | 0 | 1 | 2 | 3 |
P | 0.064 | 0.288 | 0.432 | 0.216 |
E(ξ)=3×0.6=1.8.
科目:高中數(shù)學 來源: 題型:
【題目】如圖在棱錐中,為矩形,面,
(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;
(2)當為中點時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列說法:
①一支田徑隊有男女運動員98人,其中男運動員有56人.按男、女比例用分層抽樣的方法,從全體運動員中抽出一個容量為28的樣本,那么應抽取女運動員人數(shù)是12人;
②在某項測量中,測量結果X服從正態(tài)分布N(1,σ2)(σ>0),若X在(0,1)內(nèi)取值的概率為0.4,則X在(0,2)內(nèi)取值的概率為0.8.
③廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為2x+256,這表明廢品率每增加1%,生鐵成本大約增加258元;
④為了檢驗某種血清預防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防作用”,利用2×2列聯(lián)表計算得K2的觀測值k≈3.918,經(jīng)查對臨界值表知P(K2≥3841)≈0.05,由此,得出以下判斷:在犯錯誤的概率不超過0.05的前提下認為“這種血清能起到預防的作用”,
正確的有( )
A.①②④B.①②③C.①③D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),將C上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>3倍,得曲線C1.以O為極點,x軸正半軸為極軸建立極坐標系.
(1)求C1的極坐標方程
(2)設M,N為C1上兩點,若OM⊥ON,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標會影響第二段生產(chǎn)成品的等級,具體見下表:
第一段生產(chǎn)的半成品質(zhì)量指標 | 或 | 或 | |
第二段生產(chǎn)的成品為一等品概率 | 0.2 | 0.4 | 0.6 |
第二段生產(chǎn)的成品為二等品概率 | 0.3 | 0.3 | 0.3 |
第二段生產(chǎn)的成品為三等品概率 | 0.5 | 0.3 | 0.1 |
從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:
若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.
(Ⅰ)以各組的中間值估計為該組半成品的質(zhì)量指標,估算流水線第一段生產(chǎn)的半成品質(zhì)量指標的平均值;
(Ⅱ)將頻率估計為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;
(Ⅲ)現(xiàn)在市面上有一種設備可以安裝到流水線第一段,價格是萬元,使用壽命是年,安裝這種設備后,流水線第一段半成品的質(zhì)量指標服從正態(tài)分布,且不影響產(chǎn)量.請你幫該公司作出決策,是否要購買該設備?說明理由.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.
(1)求出動點P的軌跡對應曲線C的標準方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com