已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

 

(1).(2)為定值.

【解析】

試題分析:(1)由已知建立方程組,求得.

(2)設(shè),由

,根據(jù),得.應(yīng)用韋達(dá)定理得到

根據(jù),,,

得到,從而有

,計(jì)算得到

試題解析:(1)由題意知,∴,即

,∴

故橢圓的方程為. 4分

(2)設(shè),由

,

.

7分

8分

,,,

,

12分

考點(diǎn):橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,函數(shù)的單調(diào)性與最值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練六(解析版) 題型:選擇題

已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,P(1,-2)是C上的點(diǎn),且y=x是C的一條漸近線,則C的方程為(  )

A.-x2=1

B.2x2-=1

C.-x2=1或2x2-=1

D.-x2=1或x2-=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練三(解析版) 題型:選擇題

設(shè)m>1,在約束條件下,目標(biāo)函數(shù)z=x+my的最大值小于2,則m的取值范圍為(  )

A.(1,1+) B.(1+,+∞)

C.(1,3) D.(3,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練一(解析版) 題型:選擇題

函數(shù)y=的圖象大致是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練一(解析版) 題型:選擇題

滿足z(2-i)=2+i(i為虛數(shù)單位)的復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限為(  )

A.第一象限 B.第二象限

C.第三象限 D.第四象限

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

若曲線在點(diǎn)處的切線與兩坐標(biāo)軸圍成三角形的面積為,則________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知某幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形,則此幾何體的體積為( ).

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在三棱柱中側(cè)棱垂直于底面,,,且三棱柱的體積為3,則三棱柱的外接球的表面積為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南省高三十三校第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知下列表格所示的數(shù)據(jù)的回歸直線方程為多,則a的值為 .

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案