設(shè)m>1,在約束條件下,目標(biāo)函數(shù)z=x+my的最大值小于2,則m的取值范圍為( )
A.(1,1+) B.(1+,+∞)
C.(1,3) D.(3,+∞)
A
【解析】畫(huà)出可行域,可知z=x+my在點(diǎn)取最大值,
由+<2解得1<m<1+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省三明市高三5月質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:選擇題
命題:“,都有”的否定是( )
A.,都有 B.,都有
C.,使得 D.,使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專(zhuān)題訓(xùn)練選擇填空限時(shí)練五(解析版) 題型:選擇題
已知函數(shù)f(x)=ax-1+3(a>0且a≠1)的圖象過(guò)一個(gè)定點(diǎn)P,且點(diǎn)P在直線(xiàn)mx+ny-1=0(m>0,且n>0)上,則的最小值是( )
A.12 B.16 C.25 D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專(zhuān)題訓(xùn)練選擇填空限時(shí)練二(解析版) 題型:選擇題
已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,1),若點(diǎn)M(x,y)為平面區(qū)域,上的一個(gè)動(dòng)點(diǎn),則·的取值范圍是( )
A.[-1,0] B.[0,1] C.[0,2] D.[-1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專(zhuān)題訓(xùn)練選擇填空限時(shí)練二(解析版) 題型:選擇題
設(shè)兩集合A={x|y=ln(1-x)},B={y|y=x2},則用陰影部分表示A∩B正確的是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專(zhuān)題訓(xùn)練選擇填空限時(shí)練三(解析版) 題型:選擇題
設(shè)雙曲線(xiàn)=1(a>0,b>0)的漸近線(xiàn)與拋物線(xiàn)y=x2+1相切,則該雙曲線(xiàn)的離心率等于( )
A. B.2 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專(zhuān)題訓(xùn)練選擇填空限時(shí)練一(解析版) 題型:填空題
已知F1、F2為雙曲線(xiàn)=1(a>0,b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F2作此雙曲線(xiàn)一條漸近線(xiàn)的垂線(xiàn),垂足為M,且滿(mǎn)足||=3||,則此雙曲線(xiàn)的漸近線(xiàn)方程為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè),,,則( ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com