分析 (1)由已知中的準(zhǔn)線方程,求出p值,可得拋物線的方程;
(2)先設(shè)出M,N的坐標(biāo),根據(jù)拋物線方程可求得其準(zhǔn)線方程,進(jìn)而可表示出M到y(tǒng)軸距離,根據(jù)拋物線的定義結(jié)合兩邊之和大于第三邊且A,B,F(xiàn)三點(diǎn)共線時(shí)取等號(hào)判斷出$\frac{|MF|+|NF|}{2}$的最小值即可.
解答 解:(1)∵拋物線E:y2=2px(p>0)的準(zhǔn)線方程為x=-$\frac{1}{16}$.
∴$\frac{p}{2}$=$\frac{1}{16}$,
解得:p=$\frac{1}{8}$,
即拋物線E的方程為:y2=$\frac{1}{4}$x;
(2)設(shè)M(x1,y1),N(x2,y2),
∵點(diǎn)P滿足$\frac{\overrightarrow{OM}+\overrightarrow{ON}}{2}$=$\overrightarrow{OP}$,故P為MN的中點(diǎn),
P到y(tǒng)軸距離S=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{|MF|+|NF|}{2}$-$\frac{1}{16}$≥$\frac{|MN|}{2}$-$\frac{1}{16}$=1-$\frac{1}{16}$=$\frac{15}{16}$,
當(dāng)且僅當(dāng)M,N過F點(diǎn)時(shí)取等號(hào),
點(diǎn)評(píng) 本小題主要考查拋物線的簡(jiǎn)單性質(zhì)、利用不等式求最值等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\frac{11}{2}$ | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 公差為1的等差數(shù)列 | B. | 公差為$\frac{1}{3}$的等差數(shù)列 | ||
C. | 公差為-$\frac{1}{3}$的等差數(shù)列 | D. | 不是等差數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{42}}{6}$ | B. | $\frac{\sqrt{30}}{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com