3.如圖所示的數(shù)陣中,第20行第2個(gè)數(shù)字是$\frac{1}{191}$.

分析 觀察這個(gè)數(shù)列每一行第二個(gè)數(shù)的倒數(shù),觀察發(fā)現(xiàn)連續(xù)兩項(xiàng)的差成等差數(shù)列,然后利用疊加法求出第20行第2個(gè)數(shù)的倒數(shù),從而求出所求.

解答 解:不妨令a2=2,a3=4,a4=7,
則由題意可得a3-a2=2,a4-a3=3,…a20-a19=19,
將以上各式相加得a20-a2=2+3+4+…+19,∴a20=191
∴第20行的第2個(gè)數(shù)是 $\frac{1}{191}$,
故答案為:$\frac{1}{191}$.

點(diǎn)評(píng) 本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意觀察,認(rèn)真思考,注意尋找規(guī)律,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)是定義在R上的奇函數(shù),f(2)=0,當(dāng)x>0時(shí),有xf′(x)-f(x)<0恒成立,則xf(x)>0的解集為( 。
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.點(diǎn)M的極坐標(biāo)$(4,\frac{5π}{6})$化成直角坐標(biāo)的結(jié)果是$(-2\sqrt{3},2)$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{6}}}{3}$,坐標(biāo)原點(diǎn)到直線l:y=bx+2的距離為$\sqrt{2}$,
(1)求橢圓的方程;
(2)若直線y=kx+2(k≠0)與橢圓相交于C、D兩點(diǎn),是否存在實(shí)數(shù)k,使得以CD為直徑的圓過點(diǎn)E(-1,0)?若存在,求出k的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(x+2)-x2+mx+n在點(diǎn)x=1處的切線與直線3x+7y+1=0垂直,且f(-1)=0;
(1)求實(shí)數(shù)m和n的值;
(2)求函數(shù)f(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知[x]表示實(shí)數(shù)x的整數(shù)部分,即[x]表示不超過實(shí)數(shù)x的最大整數(shù),如[-2,1]=-3,[π]=3,[2]=2.函數(shù)y=[x]稱為高斯函數(shù),也叫取整函數(shù).
(1)當(dāng)-2≤x<-1時(shí),函數(shù)y=[x]的值是2.
(2)當(dāng)-2≤x<2時(shí),用分段函數(shù)表示y=[x]=$\left\{\begin{array}{l}{-2,}&{-2≤x<-1}\\{-1,}&{-1≤x<0}\\{0,}&{0≤x<1}\\{1,}&{1≤x<2}\end{array}\right.$.
(3)畫出函數(shù)y=[x](x∈R)的圖象.
(4)畫出函數(shù)y=x-[x](x∈R)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線E:y2=2px(p>0)的準(zhǔn)線方程為x=-$\frac{1}{16}$.
(1)求拋物線的方程;
(2)定長(zhǎng)為2的線段MN的兩端點(diǎn)在拋物線E上移動(dòng),O為坐標(biāo)原點(diǎn),點(diǎn)P滿足$\frac{\overrightarrow{OM}+\overrightarrow{ON}}{2}$=$\overrightarrow{OP}$,求點(diǎn)P到y(tǒng)軸距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=x3+ax2+bx在x=1處有極值10,則f(2)等于( 。
A.1B.2C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=($\frac{1}{3}$)x-log3x,實(shí)數(shù)a、b、c滿足f(a)•f(b)•f(c)<0,且0<a<b<c,若實(shí)數(shù)x0是函數(shù)f(x)的一個(gè)零點(diǎn),那么下列不等式中,不可能成立的是(  )
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

同步練習(xí)冊(cè)答案