本題共有2個(gè)小題,第(1)小題滿分6分,第(2)小題滿分6分.
如圖,已知正四棱柱的底面邊長(zhǎng)是,體積是,分別是棱的中點(diǎn).

(1)求直線與平面所成的角(結(jié)果用反三角函數(shù)表示);
(2)求過(guò)的平面與該正四棱柱所截得的多面體的體積.
(1). (2).

試題分析:(1)連結(jié),
直線與平面所成的角等于直線與平面所成的角.
連結(jié),連結(jié),
是直線與平面所成的角. 2分
中,, 4分
.
直線與平面所成的角等于. 6分
(2)正四棱柱的底面邊長(zhǎng)是,體積是
. 8分
;
, 11分
多面體的體積為. 12分
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,體積計(jì)算利用了“間接法”。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知長(zhǎng)方體中, ,,則二面角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在棱長(zhǎng)為2的正方體中,設(shè)是棱的中點(diǎn).

⑴ 求證:
⑵ 求證:平面;
⑶ 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

三條直線相交于一點(diǎn),可能確定的平面有
A.個(gè)B.個(gè)C.個(gè)D.個(gè)或個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折疊,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,

(1) 求證:DE⊥AC
(2)求DE與平面BEC所成角的正弦值
(3)直線BE上是否存在一點(diǎn)M,使得CM//平面ADE,若存在,求M的位置,不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)P、B、D的坐標(biāo);
(2)問(wèn)當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(3)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥QD時(shí),求二面角Q-PD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:; (2)求證:;
(3)設(shè)中點(diǎn),在邊上找一點(diǎn),使平面,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

△ABC兩直角邊分別為3、4,PO⊥面ABC,O是△ABC的內(nèi)心,PO=,則點(diǎn)P 到△ABC的斜邊AB的距離是(    )   
                                
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四棱錐的底面為等腰梯形,,,垂足為是四棱錐的高。

(Ⅰ)證明:平面 平面;
(Ⅱ)若,60°,求四棱錐的體積。

查看答案和解析>>

同步練習(xí)冊(cè)答案