【題目】已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足 ,S7=56. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)若數(shù)列{bn}滿足b1=a1且bn+1﹣bn=an+1 , 求數(shù)列 的前n項(xiàng)和Tn

【答案】解:(Ⅰ)∵{an}是等差數(shù)列且 , ∴
又∵an>0∴a3=6.
,
∴d=a4﹣a3=2,
∴an=a3+(n﹣3)d=2n.
(Ⅱ)∵bn+1﹣bn=an+1且an=2n,
∴bn+1﹣bn=2(n+1)
當(dāng)n≥2時(shí),bn=(bn﹣bn1)+(bn1﹣bn2)+…+(b2﹣b1)+b1
=2n+2(n﹣1)+…+2×2+2=n(n+1),
當(dāng)n=1時(shí),b1=2滿足上式,bn=n(n+1)


=
【解析】(Ⅰ)由已知可得 ,可求a3 , 利用等差數(shù)列的求和公式及性質(zhì)可求a4 , 則d=a4﹣a3 , 從而可求通項(xiàng)(Ⅱ)由已知可得bn+1﹣bn=2(n+1),利用疊加法可求bn , 然后利用裂項(xiàng)相消法可求數(shù)列的和
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過點(diǎn)P(1,0)作直線分別交射線OA,OB于點(diǎn)A,B.
(1)當(dāng)AB的中點(diǎn)在直線x﹣2y=0上時(shí),求直線AB的方程;
(2)當(dāng)△AOB的面積取最小值時(shí),求直線AB的方程.
(3)當(dāng)PAPB取最小值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)滿足:在定義域D內(nèi)存在實(shí)數(shù)x0 , 使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.給出下列四個(gè)函數(shù):①f(x)= ;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos(πx).其中是“1的飽和函數(shù)”的所有函數(shù)的序號(hào)為(
A.①③
B.②④
C.①②
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C和y軸相切,圓心在直線x﹣3y=0上,且被直線y=x截得的弦長(zhǎng)為 ,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}是首項(xiàng)a1=4的等比數(shù)列,且S3 , S2 , S4成等差數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2|an|,設(shè)Tn為數(shù)列 的前n項(xiàng)和,若Tn≤λbn+1對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:方程x2+mx+1=0有兩個(gè)不等的正實(shí)數(shù)根,命題q:方程4x2+4(m+2)x+1=0無實(shí)數(shù)根.若“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(m1,2)B(1,1),C(3,m2m1)

(1)A,B,C三點(diǎn)共線,求實(shí)數(shù)m的值;

(2)ABBC,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過雙曲線C: =1(a>0,b>0)的中心的直線交雙曲線于點(diǎn)A,B,在雙曲線C上任取與點(diǎn)A,B不重合的點(diǎn)P,記直線PA,PB,AB的斜率分別為k1 , k2 , k,若k1k2>k恒成立,則離心率e的取值范圍為(
A.1<e<
B.1<e≤
C.e>
D.e≥

查看答案和解析>>

同步練習(xí)冊(cè)答案