【題目】在極坐標(biāo)系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ﹣)= , C與l有且僅有一個(gè)公共點(diǎn).
(Ⅰ)求a;
(Ⅱ)O為極點(diǎn),A,B為C上的兩點(diǎn),且∠AOB= , 求|OA|+|OB|的最大值.
【答案】解:(Ⅰ)曲線C:ρ=2acosθ(a>0),變形ρ2=2ρa(bǔ)cosθ,化為x2+y2=2ax,即(x﹣a)2+y2=a2 .
∴曲線C是以(a,0)為圓心,以a為半徑的圓;
由l:ρcos(θ﹣)=,展開為,
∴l(xiāng)的直角坐標(biāo)方程為x+y﹣3=0.
由直線l與圓C相切可得=a,解得a=1.
(Ⅱ)不妨設(shè)A的極角為θ,B的極角為θ+,
則|OA|+|OB|=2cosθ+2cos(θ+)
=3cosθ﹣sinθ=2cos(θ+),
當(dāng)θ=﹣時(shí),|OA|+|OB|取得最大值2.
【解析】(I)把圓與直線的極坐標(biāo)方程分別化為直角坐標(biāo)方程,利用直線與圓相切的性質(zhì)即可得出a;
(II)不妨設(shè)A的極角為θ,B的極角為θ+ , 則|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函數(shù)的單調(diào)性即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x||2x﹣1|≤3},集合B={x|x2+(4﹣a)x﹣4a>0},若A∩B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣alnx++x(a≠0)
(I)若曲線y=f(x)在點(diǎn)(1,f(1)))處的切線與直線x﹣2y=0垂直,求實(shí)數(shù)a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a∈(﹣∞,0)時(shí),記函數(shù)f(x)的最小值為g(a),求證:g(a)≤﹣e﹣4 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿足ax<ay(0<a<1),則下列關(guān)系式恒成立的是( )
A.x3>y3
B.sinx>siny
C.ln(x2+1)>ln(y2+1)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,且離心率為.
(1)求橢圓方程;
(2)斜率為的直線過點(diǎn),且與橢圓交于兩點(diǎn), 為直線上的一點(diǎn),若△為等邊三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓過拋物線y2=8x的焦點(diǎn),且與雙曲線x2﹣y2=1有相同的焦點(diǎn),則該橢圓的方程為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= +lg 的定義域?yàn)椋?/span> )
A.(2,3)
B.(2,4]
C.(2,3)∪(3,4]
D.(﹣1,3)∪(3,6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程和函數(shù)的極值:
(2)若對(duì)任意,都有成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣mx+m,m、x∈R.
(1)若關(guān)于x的不等式f(x)>0的解集為R,求m的取值范圍;
(2)若實(shí)x1 , x2數(shù)滿足x1<x2 , 且f(x1)≠f(x2),證明:方程f(x)= [f(x1)+f(x2)]至少有一個(gè)實(shí)根x0∈(x1 , x2);
(3)設(shè)F(x)=f(x)+1﹣m﹣m2 , 且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com