精英家教網 > 高中數學 > 題目詳情

【題目】已知函數y=f(x)與y=F(x)的圖象關于y軸對稱,當函數y=f(x)和y=F(x)在區(qū)間[a,b]同時遞增或同時遞減時,把區(qū)間[a,b]叫做函數y=f(x)的“不動區(qū)間”.若區(qū)間[1,2]為函數f(x)=|2x﹣t|的“不動區(qū)間”,則實數t的取值范圍是(
A.(0,2]
B.[ ,+∞)
C.[ ,2]
D.[ ,2]∪[4,+∞)

【答案】C
【解析】解:∵函數y=f(x)與y=F(x)的圖象關于y軸對稱, ∴F(x)=f(﹣x)=|2x﹣t|,
∵區(qū)間[1,2]為函數f(x)=|2x﹣t|的“不動區(qū)間”,
∴函數f(x)=|2x﹣t|和函數F(x)=|2x﹣t|在[1,2]上單調性相同,
∵y=2x﹣t和函數y=2x﹣t的單調性相反,
∴(2x﹣t)(2x﹣t)≤0在[1,2]上恒成立,
即1﹣t(2x+2x)+t2≤0在[1,2]上恒成立,
即2x≤t≤2x在[1,2]上恒成立,
≤t≤2,
故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=8lnx+15x﹣x2 , 數列{an}滿足an=f(n),n∈N+ , 數列{an}的前n項和Sn最大時,n=(
A.15
B.16
C.17
D.18

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,其中為常數.

1)證明: ;

2)是否存在,使得為等差數列?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】云南省2016年高中數學學業(yè)水平考試的原始成績采用百分制,發(fā)布成績使用等級制,各登記劃分標準為:85分及以上,記為A等,分數在[70,85)內,記為B等,分數在[60,70)內,記為C等,60分以下,記為D等,同時認定等級分別為A,B,C都為合格,等級為D為不合格. 已知甲、乙兩所學校學生的原始成績均分布在[50,100]內,為了比較兩校學生的成績,分別抽取50名學生的原始成績作為樣本進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]分別作出甲校如圖1所示樣本頻率分布直方圖,乙校如圖2所示樣本中等級為C、D的所有數據莖葉圖.

(1)求圖中x的值,并根據樣本數據比較甲乙兩校的合格率;
(2)在選取的樣本中,從甲、乙兩校C等級的學生中隨機抽取3名學生進行調研,用X表示所抽取的3名學生中甲校的學生人數,求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xln(x+1)+( ﹣a)x+2﹣a,a∈R.
(I)當x>0時,求函數g(x)=f(x)+ln(x+1)+ x的單調區(qū)間;
(Ⅱ)當a∈Z時,若存在x≥0,使不等式f(x)<0成立,求a的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設各項均為正數的數列{an}的前n項和為Sn , 且滿足2 =an+1(n∈N*).
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn=(an+1)2 ,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系中,曲線C1 (a為參數)經過伸縮變換 后的曲線為C2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(Ⅰ)求C2的極坐標方程;
(Ⅱ)設曲線C3的極坐標方程為ρsin( ﹣θ)=1,且曲線C3與曲線C2相交于P,Q兩點,求|PQ|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓E: (a>b>0),圓O:x2+y2=r2(0<r<b),若圓O的一條切線l:y=kx+m與橢圓E相交于A,B兩點.
(Ⅰ)當k=﹣ ,r=1時,若點A,B都在坐標軸的正半軸上,求橢圓E的方程;
(Ⅱ)若以AB為直徑的圓經過坐標原點O,探究a,b,r之間的等量關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設M、N、T是橢圓 上三個點,M、N在直線x=8上的攝影分別為M1、N1
(Ⅰ)若直線MN過原點O,直線MT、NT斜率分別為k1 , k2 , 求證k1k2為定值.
(Ⅱ)若M、N不是橢圓長軸的端點,點L坐標為(3,0),△M1N1L與△MNL面積之比為5,求MN中點K的軌跡方程.

查看答案和解析>>

同步練習冊答案