【題目】已知函數(shù)f(x)=xln(x+1)+( ﹣a)x+2﹣a,a∈R.
(I)當(dāng)x>0時(shí),求函數(shù)g(x)=f(x)+ln(x+1)+ x的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a∈Z時(shí),若存在x≥0,使不等式f(x)<0成立,求a的最小值.

【答案】解:(Ⅰ)∵g(x)=(x+1)ln(x+1)+(1﹣a)x+2﹣a,(x>0), ∴g′(x)=ln(x+1)+2﹣a,
當(dāng)2﹣a≥0即a≤2時(shí),g′(x)>0對x∈(0,+∞)恒成立,
此時(shí),g(x)在(0,+∞)遞增,無遞減區(qū)間,
當(dāng)2﹣a<0即a>2時(shí),
由g′(x)>0,得x>ea2﹣1,由g′(x)<0,得0<x<ea2﹣1,
此時(shí),g(x)在(0,ea2﹣1)遞減,在(ea2﹣1,+∞)遞增,
綜上,a≤2時(shí),g(x)在(0,+∞)遞增,無遞減區(qū)間;
a>2時(shí),g(x)在(0,ea2﹣1)遞減,在(ea2﹣1,+∞)遞增,
(Ⅱ)由f(x)<0,得(x+1)a>xln(x+1)+ x+2,
當(dāng)x≥0時(shí),上式等價(jià)于a>
令h(x)= ,x≥0,
由題意,存在x≥0,使得f(x)<0成立,則只需a>h(x)min ,
∵h(yuǎn)′(x)= ,
令u(x)=ln(x+1)+x﹣ ,顯然u(x)在[0,+∞)遞增,
而u(0)=﹣ <0,u(1)=ln2﹣ >0,
故存在x0∈(0,1),使得u(x0)=0,即ln(x0+1)= ﹣x0 ,
又當(dāng)x0∈[0,x0)時(shí),h′(x)<0,h(x)遞減,
當(dāng)x∈[x0 , +∞)時(shí),h′(x)>0,h(x)遞增,
故x=x0時(shí),h(x)有極小值(也是最小值),
故h(x)min=
故a≥ = ,x0∈(0,1),
而2< <3,
故a的最小整數(shù)值是3.
【解析】(Ⅰ)求出函數(shù)g(x)的導(dǎo)數(shù),通過討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)問題等價(jià)于a> ,令h(x)= ,x≥0, 唯一轉(zhuǎn)化為求出a>h(x)min , 根據(jù)函數(shù)的單調(diào)性求出h(x)的最小值,從而求出a的最小值即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,要得到g(x)=cos(ωx+ )的圖象,可將f(x)的圖象(
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點(diǎn),P是雙曲線上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時(shí), 的面積為,求此雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時(shí)代的數(shù)學(xué)家祖暅提出體積的計(jì)算原理(祖暅原理):“冪勢既同,則積不容 異”.“勢’’即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處截得兩幾何體的截面積恒等,那么這兩個(gè)幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標(biāo)系中,圖1是一個(gè)形狀不規(guī)則的封閉圖形,圖2是一個(gè)上底為l的梯形,且當(dāng)實(shí)數(shù)t取[0,3]上的任意值時(shí),直線y=t被圖l和圖2所截得的兩線段長始終相等,則圖l的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=x+1+|3﹣x|,x≥﹣1.
(I)求不等式f(x)≤6的解集;
(Ⅱ)若f(x)的最小值為n,正數(shù)a,b滿足2nab=a+2b,求2a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對稱,當(dāng)函數(shù)y=f(x)和y=F(x)在區(qū)間[a,b]同時(shí)遞增或同時(shí)遞減時(shí),把區(qū)間[a,b]叫做函數(shù)y=f(x)的“不動區(qū)間”.若區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的“不動區(qū)間”,則實(shí)數(shù)t的取值范圍是(
A.(0,2]
B.[ ,+∞)
C.[ ,2]
D.[ ,2]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)kR),且滿足f(﹣1)=f(1).

(1)求k的值;

(2)若函數(shù)y=fx)的圖象與直線沒有交點(diǎn),求a的取值范圍;

(3)若函數(shù),x[0,log23],是否存在實(shí)數(shù)m使得hx)最小值為0,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y2=4x的一條弦AB經(jīng)過焦點(diǎn)F,取線段OB的中點(diǎn)D,延長OA至點(diǎn)C,使|OA|=|AC|,過點(diǎn)C,D作y軸的垂線,垂足分別為E,G,則|EG|的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時(shí),求函數(shù)上的值域;

(2)若函數(shù)上的最小值為3,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案