【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).
(Ⅱ)現(xiàn)已知, , 三人獲得優(yōu)秀的概率分別為, , ,設(shè)隨機(jī)變量表示, , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望.
附: ,
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【答案】(Ⅰ)詳見解析;(Ⅱ)
【解析】試題分析:(1)古典概型的概率問題,關(guān)鍵是正確找出基本事件總數(shù)和所求事件包含的基本事件數(shù),然后利用古典概型的概率計(jì)算公式計(jì)算;(2)當(dāng)基本事件總數(shù)較少時(shí),用列舉法把所有的基本事件一一列舉出來,要做到不重不漏,有時(shí)可借助列表,樹狀圖列舉,當(dāng)基本事件總數(shù)較多時(shí),注意去分排列與組合;求隨機(jī)變量的分布列的主要步驟:一是明確隨機(jī)變量的取值,并確定隨機(jī)變量服從何種概率分布;二是求每一個(gè)隨機(jī)變量取值的概率,三是列成表格;(3)求出分布列后注意運(yùn)用分布列的兩條性質(zhì)檢驗(yàn)所求的分布列是否正確;(4)求解離散隨機(jī)變量分布列和方差,首先要理解問題的關(guān)鍵,其次要準(zhǔn)確無誤的找出隨機(jī)變量的所有可能值,計(jì)算出相對(duì)應(yīng)的概率,寫成隨機(jī)變量的分布列,正確運(yùn)用均值、方差公式進(jìn)行計(jì)算.
試題解析:(Ⅰ)2×2列聯(lián)表如下
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 40 | 20 | 60 |
乙班 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由算得,
,
所以有99%的把握認(rèn)為學(xué)生的環(huán)保知識(shí)成績(jī)與文理分科有關(guān) 5分
(Ⅱ)設(shè)成績(jī)優(yōu)秀分別記為事件,則
∴隨機(jī)變量的取值為0,1,2,3 6分
,
10分
所以隨機(jī)變量的分布列為:
X | 0 | 1 | 2 | 3 |
P |
E(X) =0×+1×+2×+3× = 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且 =2csinA
(1)確定角C的大。
(2)若c= ,且△ABC的面積為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的平均分是85,乙班學(xué)生成績(jī)的中位數(shù)是89.
(1)求和的值;
(2)計(jì)算乙班7位學(xué)生成績(jī)的方差.
(3)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求乙班至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于回歸分析的說法中錯(cuò)誤的是( )
A. 回歸直線一定過樣本中心
B. 殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
C. 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好
D. 甲、乙兩個(gè)模型的分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A= ,b2﹣a2= c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過定點(diǎn)的直線與雙曲線的左支有兩個(gè)交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為, ,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 是兩條不同直線, , 是兩個(gè)不同平面,則下列命題正確的是( )
A. 若, 垂直于同一平面,則與平行
B. 若, 平行于同一平面,則與平行
C. 若, 不平行,則在內(nèi)不存在與平行的直線
D. 若, 不平行,則與不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: (為給定的正常數(shù), 為參數(shù), )構(gòu)成的集合為,給出下列命題:
①當(dāng)時(shí), 中直線的斜率為;
②中的所有直線可覆蓋整個(gè)坐標(biāo)平面.
③當(dāng)時(shí),存在某個(gè)定點(diǎn),該定點(diǎn)到中的所有直線的距離均相等;
④當(dāng)時(shí), 中的兩條平行直線間的距離的最小值為;
其中正確的是__________(寫出所有正確命題的編號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com