【題目】已知, 是兩條不同直線, , 是兩個不同平面,則下列命題正確的是( )
A. 若, 垂直于同一平面,則與平行
B. 若, 平行于同一平面,則與平行
C. 若, 不平行,則在內(nèi)不存在與平行的直線
D. 若, 不平行,則與不可能垂直于同一平面
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家父母記錄了女兒玥玥的年齡(歲)和身高(單位cm)的數(shù)據(jù)如下:
年齡x | 6 | 7 | 8 | 9 |
身高y | 118 | 126 | 136 | 144 |
(1)試求y關(guān)于x的線性回歸方程 = x+
(2)試預(yù)測玥玥10歲時的身高.(其中, = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識,增強環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認為環(huán)保知識成績優(yōu)秀與學(xué)生的文理分類有關(guān).
(Ⅱ)現(xiàn)已知, , 三人獲得優(yōu)秀的概率分別為, , ,設(shè)隨機變量表示, , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望.
附: ,
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】山西某公司有一批專業(yè)技術(shù)人員,對他們進行年齡狀況和接受教育程度(本科學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷 | 35歲以下 | 3550歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | 20 |
(Ⅰ)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個容量為10的樣本,將該樣本看成一個總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;
(Ⅱ)在這個公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個人,其中35歲以下48人,50歲以上10人,再從這個人中隨機抽取出1人,此人的年齡為50歲以上的概率為,求、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項公式;
(2)令bn=an3n(x∈R).求數(shù)列{bn}前n項和的公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(1)函數(shù)的圖象在點處的切線與函數(shù)的圖象相切,求實數(shù)的值;
(2)若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實數(shù)的取值范圍;
(3)若, ,且,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn= ,數(shù)列{cn}的前n項和為Tn .
①求Tn;
②對于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com