精英家教網 > 高中數學 > 題目詳情

已知四棱錐P-ABCD,底面ABCD是,邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.

(1)證明:DN//平面PMB;
(2)證明:平面PMB平面PAD.

(1)證明見解析;(2)證明見解析.

解析試題分析:(1)首先取中點,然后利用三角形中位線定理與平行四邊形證明,最后利用直線與平面平行的判定定理.(2)轉化為證明平面,進而轉化為證明(由正三角形三線合一可證)和,而證明可轉化為證明平面(已知).
試題解析:(1)證明:取中點,連結

因為分別是棱中點,所以,且,于是
.
(2)
又因為底面、邊長為的菱形,且中點,
所以
,所以

考點:1、直線與平面平行的判定及性質應用;2、平面與平面垂直的判定及性質應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.

(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設二面角M—BP—C的大小為θ,求cos θ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且底面ABCD,,E是PA的中點.

(1)求證:平面平面EBD;
(2)若PA=AB=2,求三棱錐P-EBD的高.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在斜三棱柱中,側面⊥底面,側棱與底面成60°的角,.底面是邊長為2的正三角形,其重心為點,是線段上一點,且.
 
(1)求證://側面;
(2)求平面與底面所成銳二面角的余弦值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖一,平面四邊形關于直線對稱,.把沿折起(如圖二),使二面角的余弦值等于.對于圖二,完成以下各小題:

(1)求兩點間的距離;
(2)證明:平面;
(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱柱中,側面為菱形, 且,的中點.

(1)求證:平面平面
(2)求證:∥平面

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直三棱柱中,,,求:

(1)異面直線所成角的余弦值;
(2)直線到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖五面體中,四邊形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分別為AE、BD、EF的中點.

(1)求證:PQ∥平面BCE;
(2)求證:AM⊥平面ADF.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知:a、b、c、d是不共點且兩兩相交的四條直線,求證:a、b、c、d共面

查看答案和解析>>

同步練習冊答案