10.已知log${\;}_{\frac{2}{3}}$a>1,($\frac{2}{3}$)b>1,2c=3,則(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

分析 根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)以及指數(shù)式化為對數(shù)式,得出a、b、c的大。

解答 解:∵log${\;}_{\frac{2}{3}}$a>1,∴0<a<$\frac{2}{3}$;
又∵($\frac{2}{3}$)b>1,∴b<0;
又∵2c=3,∴c=log23>1;
∴c>a>b.
故選:D.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.a(chǎn)=sin(sin1),b=cos(cos1),c=tan(tan1),下列正確的是( 。
A.b<c<aB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)p:A={x|2x2-3ax+a2<0},q:B={x|x2+3x-10≤0}.
(Ⅰ)求A;
(Ⅱ)當(dāng)a<0時,若¬p是¬q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,底面積為S,點D,E,F(xiàn)在側(cè)棱AA1,BB1,CC1上,且AD=h1,BE=h2,CF=h3,求幾何體ABC-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)$\frac{π}{4}$<α$<\frac{π}{2}$,角α的正弦線、余弦線和正切線的數(shù)量分別為a,b,c,由圖比較a,b,c的大;如果$\frac{π}{2}$<α<$\frac{3π}{4}$,則a,b,c的大小關(guān)系又如何?(作圖并有比較的過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且$\sqrt{3}$(tanA+tanB)=tanAtanB-1,求△ABC的三內(nèi)角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計算-sin133°cos197°-cos47°cos73°的結(jié)果為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平行四邊形形ABCD中,已知AB=8,AD=6,∠BAD=$\frac{2π}{3}$,點E,F(xiàn)分別在邊BC,DC上,且BC=3BE,DC=λDF,$\overrightarrow{AE}$•$\overrightarrow{AF}$=16,則λ的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知直線的傾斜角α=30°,且直線過點M(2,1),則此直線的方程為$\sqrt{3}x-3y+3-2\sqrt{3}$=0.

查看答案和解析>>

同步練習(xí)冊答案