設(shè)點p是橢圓(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內(nèi)心,若 S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是   
【答案】分析:設(shè)△PF1F2的內(nèi)切圓半徑為r,根據(jù)內(nèi)心的性質(zhì),結(jié)合三角形面積公式將S△IPF1+S△IPF2=2S△IF1F2化簡整理,可得|PF1|+|PF2|=2|F1F2|.由此結(jié)合橢圓離心率公式,即可得到該橢圓的離心率.
解答:解:設(shè)△PF1F2的內(nèi)切圓半徑為r,則
S△IPF1=|PF1|•r,S△IPF2=|PF2|•r,S△IF1F2=|F1F2|•r,
∵S△IPF1+S△IPF2=2S△IF1F2,
|PF1|•r+|PF2|•r=|F1F2|•r,可得|PF1|+|PF2|=2|F1F2|.
∴橢圓的離心率e====
故答案為:
點評:本題已知橢圓的焦點三角形的一個面積關(guān)系式,求橢圓的離心率.著重考查了三角形內(nèi)切圓的性質(zhì)、橢圓的標(biāo)準(zhǔn)方程和簡單性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C1:x2+y2-10x-6y+32=0,動圓C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求證:圓C1、圓C2相交于兩個定點;
(Ⅱ)設(shè)點P是橢圓
x24
+y2=1
上的點,過點P作圓C1的一條切線,切點為T1,過點P作圓C2的一條切線,切點為T2,問:是否存在點P,使無窮多個圓C2,滿足PT1=PT2?如果存在,求出所有這樣的點P;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
與圓x2+y2=3b2的一個交點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且|PF1|=3|PF2|,則橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)點p是橢圓數(shù)學(xué)公式(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內(nèi)心,若 S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年河北省衡水中學(xué)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)點p是橢圓(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內(nèi)心,若 S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是   

查看答案和解析>>

同步練習(xí)冊答案