(選修4-1:幾何證明選講)
如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且∠EDF=∠ECD.
(1)求證:EF•EP=DE•EA;
(2)若EB=DE=6,EF=4,求PA的長(zhǎng).
分析:(1)證明△DEF∽△PEA,即可得到比例式,從而可得結(jié)論;
(2)利用△DEF∽△CED,求EC的長(zhǎng),利用相交弦定理,求EP的長(zhǎng),再利用切割線定理,即可求PA的長(zhǎng).
解答:(1)證明:∵CD∥AP,∴∠ECD=∠APE.
∵∠EDF=∠ECD,∴∠APE=∠EDF…(3分)
又∵∠DEF=∠PEA,∴△DEF∽△PEA
∴DE:PE=EF:EA.即EF•EP=DE•EA.…(5分)
(2)解:∵∠EDF=∠ECD,∠CED=∠FED,
∴△DEF∽△CED,∴DE:EC=EF:DE,
∴DE2=EF•EC,
∵DE=6,EF=4,∴EC=9.…(6分)
∵弦AD、BC相交于點(diǎn)E,∴DE•EA=CE•EB
∴CE•EB=EF•EP.…(7分)
∴9×6=4×EP.解得:EP=
27
2
.…(8分)
PB=PE-BE=
15
2
,PC=PE+EC=
45
2

由切割線定理得:PA2=PB•PC,…(9分)
PA2=
15
2
×
45
2
,
PA=
15
2
3
.…(10分)
點(diǎn)評(píng):本題考查與圓有關(guān)的比例線段,考查三角形的相似,考查相交弦定理,切割線定理的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
已知⊙O的弦AB長(zhǎng)為4,將線段AB延長(zhǎng)到點(diǎn)P,使BP=2;過(guò)點(diǎn)P作直線PC切⊙O于點(diǎn)C;
(1)求線段PC的長(zhǎng);
(2)作⊙O的弦CD交AB于點(diǎn)Q(CQ<DQ),且Q為AB中點(diǎn),又CD=5,求線段CQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•海口二模)選修4-1:幾何證明選講
切線AB與圓切于點(diǎn)B,圓內(nèi)有一點(diǎn)C滿足AB=AC,∠CAB的平分線AE交圓于D,E,延長(zhǎng)EC交圓于F,延長(zhǎng)DC交圓于G,連接FG.
(Ⅰ)證明:AC∥FG;
(Ⅱ)求證:EC=EG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州模擬)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.
B.選修4-2:矩陣與變換
已知矩陣M=
21
34

(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量;
C.選修4-2:矩陣與變換
在平面直角坐標(biāo)系x0y中,求圓C的參數(shù)方程為
x=-1+rcosθ
y=rsinθ
為參數(shù)r>0),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
π
4
)=2
2
.若直線l與圓C相切,求r的值.
D.選修4-5:不等式選講
已知實(shí)數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
如圖,已知PA與⊙O相切于點(diǎn)A,PBC為⊙O的割線,弦CD∥AP,AD與BC相交于點(diǎn)E,F(xiàn)為CE上一點(diǎn),且DE2=EF•EC
(I)求證:A、P、D、F四點(diǎn)共圓
(II)若AE=6,DE=EB=4,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)選修4-1:幾何證明選講
如圖,△ABC是⊙O的內(nèi)接三角形,若AD是△ABC的高,AE是⊙O的直徑,F(xiàn)是
BC
的中點(diǎn).求證:
(1)AB•AC=AE•AD;
(2)∠FAE=∠FAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案