10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$+$\overrightarrow{2b}$)∥$\overrightarrow{c}$,則k=( 。
A.-8B.2C.-$\frac{1}{2}$D.-$\frac{1}{8}$

分析 根據(jù)平面向量的坐標(biāo)運算與向量的共線定理,列出關(guān)于k的方程,解方程即可.

解答 解:∵$\overrightarrow{a}$=(1,2),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(k,-2),
∴$\overrightarrow{a}$+$\overrightarrow{2b}$=(1,4),
又($\overrightarrow{a}$+$\overrightarrow{2b}$)∥$\overrightarrow{c}$,
∴1×(-2)-4k=0,
解得k=-$\frac{1}{2}$.
故選:C.

點評 本題考查了平面向量的坐標(biāo)運算和共線定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=ax2+bx+c(a>0),
(Ⅰ)當(dāng)a=1,b=2,若|f(x)|-2=0有且只有兩個不同的實根,求實數(shù)c的取值范圍;
(Ⅱ)設(shè)方程f(x)=x的兩個實根為x1,x2,且滿足0<t<x1,x2-x1>$\frac{1}{a}$,試判斷f(t)與x1的大小,并給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=2sin(2x-$\frac{π}{6}$),則該函數(shù)圖象的一條對稱軸方程是( 。
A.x=$\frac{π}{12}$B.x=$\frac{5π}{12}$C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+2y≥0\\ 2x-y≥0\\ x-3≤0\end{array}\right.$,則不等式組表示的平面區(qū)域面積是$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-cx-c(c為常數(shù),e是自然對數(shù)的底數(shù)),f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)c>1時,試求證:
①對任意的x>0,不等式f(lnc+x)>f(lnc-x)恒成立;
②函數(shù)y=f(x)有兩個相異的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)直線4x-3y+12=0的傾斜角為A
(1)求tan2A的值;
(2)求cos($\frac{π}{3}$-A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)全集I=R,集合A={y|y=log3x,x>3},B={x|y=$\sqrt{x-1}$},則( 。
A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁IB)≠∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)直線l是曲線y=4x3+3lnx的切線,則直線l的斜率的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x=$\frac{1}{2}$(2005${\;}^{\frac{1}{n}}$-2005${\;}^{-\frac{1}{n}}$)(其中n為正整數(shù)),那么(x-$\sqrt{1+{x}^{2}}$)n=-$\frac{1}{2005}$或$\frac{1}{2005}$.

查看答案和解析>>

同步練習(xí)冊答案