14.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且an2+2an=4Sn
(1)求Sn
(2)設(shè)bn=($\sqrt{n+1}$+$\sqrt{n}$)•$\sqrt{S_n}$,求數(shù)列{${\frac{1}{b_n}}\right.$}的前n項(xiàng)和Tn

分析 (1)利用遞推關(guān)系、等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出;
(2)利用“裂項(xiàng)求和”方法即可得出.

解答 解:(1)由題意得$\left\{\begin{array}{l}a_n^2+2{a_n}=4{S_n}\\ a_{n+1}^2+2{a_{n+1}}=4{S_{n+1}}\end{array}\right.$,
兩式作差得(an+1+an)(an+1-an-2)=0,又?jǐn)?shù)列{an}的各項(xiàng)都為正數(shù),
∴an+1-an-2=0,即an+1-an=2,
當(dāng)n=1時(shí),有${a}_{1}^{2}+2{a}_{1}$=4a1,解得a1=2,
∴數(shù)列{an}為等差數(shù)列,首項(xiàng)為2,公差為2.∴Sn=2n+$\frac{n(n-1)}{2}×2$=n2+n.
(2)∵bn=($\sqrt{n+1}$+$\sqrt{n}$)•$\sqrt{S_n}$=($\sqrt{n+1}$+$\sqrt{n}$)$•\sqrt{n(n+1)}$,
∴$\frac{1}{b_n}=\frac{1}{{(\sqrt{n+1}+\sqrt{n})}}•\frac{1}{{\sqrt{S_n}}}=\frac{{\sqrt{n+1}-\sqrt{n}}}{{\sqrt{n(n+1)}}}=\frac{1}{{\sqrt{n}}}-\frac{1}{{\sqrt{n+1}}}$,
∴${T_n}=\sum_{i=1}^n{\frac{1}{b_i}}=\sum_{i=1}^n{(\frac{1}{{\sqrt{i}}}-\frac{1}{{\sqrt{i+1}}})=1-\frac{1}{{\sqrt{n+1}}}}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若(x2+$\frac{1}{{3{x^3}}}}$)n(n∈N*)展開(kāi)式中含有常數(shù)項(xiàng),則n的最小值是( 。
A.3B.5C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在下列給出的命題中,所有正確的命題的序號(hào)為②③.
①若△ABC為銳角三角形,則sinA<cosB;
②在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,M為B1C1的中點(diǎn),若P點(diǎn)在正方形ABB1A1邊界及內(nèi)部運(yùn)動(dòng),且MP⊥DB1,則P點(diǎn)軌跡長(zhǎng)等于$\sqrt{2}$;
③已知M(x1,y1),N(x2,y2)為不同兩點(diǎn),直線l:ax+by+c=0,若$\frac{a{x}_{1}+b{y}_{1}+c}{a{x}_{2}+b{y}_{2}+c}$=-1,則直線l經(jīng)過(guò)線段MN的中點(diǎn);
④在△ABC中,BC=5,G、O分別為△ABC的重心和外心,且$\overline{OG}$•$\overline{BC}$=5,則△ABC是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,A=60°,7c2-7b2=5a2,則$\frac{c}$的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知不等式組$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≥-1}\\{y≥0}\end{array}}\right.$所表示的平面區(qū)域?yàn)镈,直線l:y=3x+m不經(jīng)過(guò)區(qū)域D,則實(shí)數(shù)m的取值范圍是m>3或m<-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一個(gè)圓錐被過(guò)頂點(diǎn)的平面截去了較小的一部分幾何體,余下的幾何體的三視圖如圖,則余下部分的幾何體的體積為( 。
A.$\frac{\sqrt{2}}{3}$+$\frac{\sqrt{2}}{2}$πB.$\sqrt{2}$+$\frac{\sqrt{2}}{2}$πC.$\sqrt{2}$+$\frac{3\sqrt{2}}{2}$πD.2$\sqrt{2}$+3$\sqrt{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)全集U={x|x>1},集合A={x|x>2},則∁UA=( 。
A.{x|1<x≤2}B.{x|1<x<2}C.{x|x>2}D.{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a2a9a16=64,則log2a1+log2a2+…+log2a17=( 。
A.34B.32C.30D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知集合A={x|x2+px-2=0},且1∈A,求p的值及集合A.

查看答案和解析>>

同步練習(xí)冊(cè)答案