對于定義域為D的函數(shù)y=f(x),若同時滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b];那么把y=f(x)(x∈D)叫閉函數(shù).
(1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實數(shù)k的取值范圍.
【答案】分析:(1)根據(jù)單調(diào)性依據(jù)閉區(qū)間的定義等價轉(zhuǎn)化為方程,直接求解.
(2)判斷其在(0,+∞)是否有單調(diào)性,再據(jù)閉函數(shù)的定義判斷;
(3)根據(jù)閉函數(shù)的定義一定存在區(qū)間[a,b],由定義直接轉(zhuǎn)化求解即可.
解答:解:(1)由題意,y=-x3在[a,b]上遞減,
解得(4分)
所以,所求的區(qū)間為[-1,1];(5分)
(2)取x1=1,x2=10,則
即f(x)不是(0,+∞)上的減函數(shù).
,
,
即f(x)不是(0,+∞)上的增函數(shù)
所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,
從而該函數(shù)不是閉函數(shù);(9分)
(3)若是閉函數(shù),則存在區(qū)間[a,b],
在區(qū)間[a,b]上,函數(shù)f(x)的值域為[a,b],
,∴a,b為方程的兩個實數(shù)根,
即方程x2-(2k+1)x+k2-2=0(x≥-2,x≥k)有兩個不等的實根(11分)
當(dāng)k≤-2時,有,解得,(13分)
當(dāng)k>-2時,有,無解,(15分)
綜上所述,
點評:考查函數(shù)的單調(diào)性及新定義型函數(shù)的理解,以及問題的等價轉(zhuǎn)化能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]⊆D,同時滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時,f(x)的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)求證:函數(shù)y=g(x)=3-
5
x
不存在“和諧區(qū)間”.
(2)已知:函數(shù)y=
(a2+a)x-1
a2x
(a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時,求出n-m的最大值.
(3)易知,函數(shù)y=x是以任一區(qū)間[m,n]為它的“和諧區(qū)間”.試再舉一例有“和諧區(qū)間”的函數(shù),并寫出它的一個“和諧區(qū)間”.(不需證明,但不能用本題已討論過的y=x及形如y=
bx+c
ax
的函數(shù)為例)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為D的函數(shù)f(x),若存在區(qū)間M=[a,b]⊆D(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的“等值區(qū)間”.給出下列三個函數(shù):
f(x)=(
12
)x
;   ②f(x)=x3;    ③f(x)=log2x+1
則存在“等值區(qū)間”的函數(shù)的個數(shù)是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為D的函數(shù)y=f(x),若同時滿足下列條件:①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b];那么把y=f(x)(x∈D)叫閉函數(shù).
(1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)=
3
4
x+
1
x
(x>0)是否為閉函數(shù)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•崇明縣一模)定義:對于定義域為D的函數(shù)f(x),如果存在t∈D,使得f(t+1)=f(t)+f(1)成立,稱函數(shù)f(x)在D上是“T”函數(shù).已知下列函數(shù):
①f(x)=
1x
; 
②f(x)=log2(x2+2);
③f(x)=2x(x∈(0,+∞)); 
④f(x)=cosπx(x∈[0,1]),其中屬于“T”函數(shù)的序號是
.(寫出所有滿足要求的函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為D的函數(shù)f(x),若同時滿足下列條件:①f(x)在D內(nèi)有單調(diào)性;②存在區(qū)間[a,b]⊆D,使f(x)在區(qū)間[a,b]上的值域也為[a,b],則稱f(x)為D上的“和諧”函數(shù),[a,b]為函數(shù)f(x)的“和諧”區(qū)間.
(Ⅰ)求“和諧”函數(shù)y=x3符合條件的“和諧”區(qū)間;
(Ⅱ)判斷函數(shù)f(x)=x+
4
x
(x>0)
是否為“和諧”函數(shù)?并說明理由.
(Ⅲ)若函數(shù)g(x)=
x+4
+m
是“和諧”函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案