已知函數(shù)f(x)=sin2ωx+sinωxcosωx(ω>0)的最小正周期為π,

(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)增區(qū)間;

(Ⅱ)求函數(shù)f(x)在[0,]上的值域.

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

試題分析:(Ⅰ)先化簡得,再利用公式可求得,的單調(diào)增區(qū)間為.(Ⅱ)先求得,,.

試題解析:(Ⅰ) 

,       (2分)

.                   (3分)

.由,得,,

的單調(diào)增區(qū)間為.           (5分)

(Ⅱ)由,,         (8分)

,上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092200310898107911/SYS201309220031544889530741_DA.files/image003.png">.         (12分)

考點(diǎn):1.和角、差角、二倍角公式;2.三角函數(shù)的值域、單調(diào)性.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:張家港市后塍高級(jí)中學(xué)2006~2007年第一學(xué)期高三數(shù)學(xué)十二月調(diào)研測試卷 題型:044

已知函數(shù)f(x)=ax2+bx+1(a,b∈R)

(1)

f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立,求f(x)表達(dá)式

(2)

在1條件下,當(dāng)x∈[-2,2]時(shí),S(x)=xf(x)-kx單調(diào)遞增,求實(shí)數(shù)k取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:013

已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為-1.有以下命題:

①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0;④若對(duì)x∈[-2,2],k≤恒成立,則k的最大值為2.其中正確命題的個(gè)數(shù)為

[  ]

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省瑞安中學(xué)2012屆高三10月月考數(shù)學(xué)文科試題 題型:044

已知函數(shù),g(x)=lnx.

(1)設(shè)F(x)=f(x)+g(x),當(dāng)a=2時(shí),求F(x)在上的單調(diào)區(qū)間;

(2)在條件(1)下,若對(duì)任意(e為自然對(duì)數(shù)的底數(shù))均有|F(x1)-F(x2)|<3m+-6恒成立,求實(shí)數(shù)m的取值范圍;

(3)設(shè)G(x)=f(x)-g(x)在x=1處的切線與坐標(biāo)軸圍成的三角形面積為S,存在α∈N*且a≠4使得t≤S成立,求最大的整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3x2x=-1處取得極值,記g(x)=,程序框圖如圖所示,若輸出的結(jié)果S>,則判斷框中可以填入的關(guān)于n的判斷條件是                                   (  )

A.n≤2 011?                       B.n≤2 012?

C.n>2 011?                        D.n>2 012?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州四所重點(diǎn)中學(xué)高三上學(xué)期期末聯(lián)考理數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)f(x)=ax3x2在x=-1處取得極大值,記g(x)=。程序框圖如圖所示,若輸出的結(jié)果S=,則判斷框中可以填入的關(guān)于n的判斷條件是(    )

A.n≤2013   B.n≤2014        C.n>2013     D.n>2014

 

查看答案和解析>>

同步練習(xí)冊(cè)答案