如圖,某動(dòng)物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長(zhǎng)為x米 (2≤x≤6).
(1)用x表示墻AB的長(zhǎng);
(2)假設(shè)所建熊貓居室的墻壁造價(jià)(在墻壁高度一定的前提下)為每米1000元,請(qǐng)將墻壁的總造價(jià)y(元)表示為x(米)的函數(shù);
(3)當(dāng)x為何值時(shí),墻壁的總造價(jià)最低?

【答案】分析:(1)由AB•AD=24,得AD=x,可得AB;
(2)墻壁的總造價(jià)函數(shù)y=1000×,整理即可;
(3)由基本不等式,可求得函數(shù)y=3000的最小值及對(duì)應(yīng)的x的值.
解答:解:(1)根據(jù)題意,由AB•AD=24,得AD=x,∴(米);
(2)墻壁的總造價(jià)函數(shù)y=1000×=3000(其中2≤x≤6);
(3)由y=3000≥3000×2=24000,當(dāng)且僅當(dāng),即x=4時(shí)取等號(hào);
∴x=4時(shí),y有最小值為24000;所以,當(dāng)x為4米時(shí),墻壁的總造價(jià)最低.
點(diǎn)評(píng):本題考查了基本不等式a+b≥2(a>0,b>0)的應(yīng)用,應(yīng)用基本不等式時(shí)要注意“=”成立的條件是什么.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,某動(dòng)物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長(zhǎng)為x米 (2≤x≤6).
(1)用x表示墻AB的長(zhǎng);
(2)假設(shè)所建熊貓居室的墻壁造價(jià)(在墻壁高度一定的前提下)為每米1000元,請(qǐng)將墻壁的總造價(jià)y(元)表示為x(米)的函數(shù);
(3)當(dāng)x為何值時(shí),墻壁的總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某動(dòng)物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長(zhǎng)為x米(2≤x≤6),所建熊貓居室的墻壁造價(jià)(在墻壁高度一定的前提下)為每米1000元,請(qǐng)將墻壁的總造價(jià)y(元)表示為x(米)的函數(shù);當(dāng)x為何值時(shí),墻壁的總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高二下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某動(dòng)物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長(zhǎng)為x米 .

(1)用x表示墻AB的長(zhǎng);

(2)假設(shè)所建熊貓居室的墻壁造價(jià)(在墻壁高度一定的前提下)為每米1000元,請(qǐng)將墻壁的總造價(jià)y(元)表示為x(米)的函數(shù);

(3)當(dāng)x為何值時(shí),墻壁的總造價(jià)最低?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省湘西州花垣民中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某動(dòng)物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長(zhǎng)為x米 (2≤x≤6).
(1)用x表示墻AB的長(zhǎng);
(2)假設(shè)所建熊貓居室的墻壁造價(jià)(在墻壁高度一定的前提下)為每米1000元,請(qǐng)將墻壁的總造價(jià)y(元)表示為x(米)的函數(shù);
(3)當(dāng)x為何值時(shí),墻壁的總造價(jià)最低?

查看答案和解析>>

同步練習(xí)冊(cè)答案