如圖所示,線段AB與CD互相垂直平分于點O,|AB|=2a(a>0),|CD|="2b" (b>0),動點P滿足|PA|·|PB|=|PC|·|PD|.求動點P的軌跡方程.
P的軌跡方程為x2-y2=
以O(shè)為坐標原點,直線AB、CD分別為x軸、y軸建立直角坐標系,
則A(-a,0),B(a,0),C(0,-b),D(0,b),

設(shè)P(x,y),由題意知|PA|·|PB|=|PC|·|PD|,
·
=·,
化簡得x2-y2=.
故動點P的軌跡方程為x2-y2=.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的左、右焦點分別為、,其中也是拋物線的焦點,在第一象限的交點,且.(Ⅰ)求橢圓的方程;(Ⅱ)已知菱形的頂點AC在橢圓上,頂點BC在直線上,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的中心是坐標原點,焦點在軸上,離心率,已知點到這個橢圓上的點的最遠距離是4,求這個橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)若橢圓的離心率等于,拋物線 的焦點在橢圓的頂點上。(Ⅰ)求拋物線的方程;
(Ⅱ)求的直線與拋物線、兩點,又過、作拋物線的切線、,當時,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓與雙曲線有共同的焦點F(-4,0)、F(4,0),并且橢圓和長軸長是雙曲線實軸長的2倍,試求橢圓與雙曲線交點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點在原點,對稱軸是x軸,拋物線上的點M(-3,m)到焦點的距離等于5,求拋物線的方程和M的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等腰三角形的頂點的坐標是,底邊一個端點的坐標是,求另一個端點的軌跡方程,并說明它是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,右準線的方程為,傾斜角為的直線交橢圓兩點,且的中點坐標為,求橢圓的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是(  )
A.方程表示斜率為1,在軸上的截距為2的直線
B.三個頂點的坐標是,中線的方程是
C.到軸距離為5的點的軌跡方程是
D.與坐標軸等距離的點的軌跡方程是

查看答案和解析>>

同步練習冊答案