12.計算以下式子的值:
(1)${(-2016)^0}+\root{3}{2}•{2^{\frac{2}{3}}}+{(\frac{1}{4})^{-\frac{1}{2}}}$;
(2)${log_3}81+lg20+lg5+{4^{{{log}_4}2}}+{log_5}1$.

分析 (1)利用指數(shù)的運算法則即可得出.
(2)利用對數(shù)的運算法則即可得出.

解答 解:(1)原式=$1+{2^{\frac{1}{3}}}•{2^{\frac{2}{3}}}+{4^{\frac{1}{2}}}=1+2+2=5$;
(2)原式=${log_3}{3^4}+lg100+2+0=4+2+2=8$.

點評 本題考查了指數(shù)與對數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知,某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積為12(cm3);表面積為30+6$\sqrt{2}$(cm2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知關(guān)于x的函數(shù)f(x)=x2+bx+b+a.a(chǎn),b為實數(shù).
(1)若函數(shù)f(x)的值域為[0,+∞),且不等式f(x)<c的解集為(t,t+2),求實數(shù)c值;
(2)若任意b∈R,總存在x1∈r,使得f(x1)<0成立,求a的取值范圍;
(3)當(dāng)b=1時,解不等式f(x)<a(x2+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C:x2+y2=2,點P(2,0),M(0,2),設(shè)Q為圓C上一個動點.
(1)求△QPM面積的最大值,并求出最大值時對應(yīng)點Q的坐標(biāo);
(2)在(1)的結(jié)論下,過點Q作兩條相異直線分別與圓C相交于A,B兩點,若直線QA、QB的傾斜角互補(bǔ),問直線AB與直線PM是否垂直?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={1,2,3}和Q={-1,0,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(a,b)是區(qū)域$\left\{\begin{array}{l}{x+y-8≤0}\\{x>0}\\{y>0}\end{array}\right.$內(nèi)的一點,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知3x=2y=12,則$\frac{1}{x}$+$\frac{2}{y}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z=$\frac{2i}{1+i}$,則z的共軛復(fù)數(shù)的虛部為( 。
A.-1B.-iC.1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,既是單調(diào)函數(shù)又是奇函數(shù)的是(  )
A.y=-xB.y=3|x|C.y=x0(x≠0)D.y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=a|x-b|(a>0,a≠1),則對任意的非零實數(shù)a,b,m,n,p,關(guān)于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是( 。
A.{1,3}B.{1,4}C.{1,3,4}D.{1,2,3,4}

查看答案和解析>>

同步練習(xí)冊答案