已知函數(shù)f(x)=
1-(x-1)2
,若0<x1<x2<1,則( 。
分析:先求出f(x)=
2x-x2
,再判斷出F(x)=
f(x)
x
=
2x-x2
x
=
2
x
-1
是減函數(shù),由此能得到結(jié)果.
解答:解:∵f(x)=
1-(x-1)2
=
2x-x2
,
F(x)=
f(x)
x
=
2x-x2
x
=
2
x
-1
是減函數(shù),
∵0<x1<x2<1,
f(x1)
x1
f(x2)
x2

故選A.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的判斷與證明,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿(mǎn)足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案