在正方體ABCD-A1B1C1D1中,M、N分別是AA1、AB上的點,若∠NMC1=90°,那么∠NMB1=(  )
分析:注意到直線B1C1與直線MN異面垂直,結合題意MC1⊥MN,可得MN⊥平面B1C1M,利用線面垂直的性質(zhì),可得∠NMB1=90°.
解答:解:∵正方體ABCD-A1B1C1D1中,B1C1⊥平面AA1B1B,MN?平面AA1B1B,
∴B1C1⊥MN
∵∠NMC1=90°,即MC1⊥MN,且MC1∩B1C1=C1
∴MN⊥平面B1C1M
∵MB1?平面B1C1M
∴MN⊥MB1,即∠NMB1=90°
故選B
點評:本題以線面垂直為載體,通過證明垂直來證明兩條相交直線所成角為90°,著重考查了異面直線所成角和線面垂直的判定與性質(zhì)等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結論正確的為
①③④
.(寫出所有正確結論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點,則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點. 
(1)若M為BB′的中點,證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結論的序號是
 

查看答案和解析>>

同步練習冊答案