已知點Pn(an,bn)(n∈N+)滿足數(shù)學(xué)公式,且點P1的坐標(biāo)為(-1,1),設(shè)經(jīng)過點P1、P2的直線為L.
(1)求直線L的方程;
(2)已知點Pn(an,bn)(n∈N+)在直線L上,求證:數(shù)列數(shù)學(xué)公式是等差數(shù)列;
(3)在滿足(II)條件下,求對于所有n∈N+,能使不等式(1+a1)(1+a2)…數(shù)學(xué)公式成立的最大實數(shù)k的值.

解:(1)因為 ,所以 .所以
所以過點P1,P2的直線l的方程為2x+y=1.
(2)因為Pn(an,bn)在直線l上,所以2an+bn=1.所以bn+1=1-2an+1
由an+1=anbn+1,得an+1=an(1-2an+1).即an+1=an-2anan+1
所以 .所以 是公差為2的等差數(shù)列.
(3)由(2)得
所以
所以
所以 .(8分)
依題意 恒成立.
設(shè)
所以只需求滿足k≤F(n)的F(n)的最小值.
因為
==,
所以F(n)(x∈N*)為增函數(shù).
所以
所以 .所以
分析:(1)由 ,知 .由此知過點P1,P2的直線l的方程為2x+y=1.
(2)由Pn(an,bn)在直線l上,知2an+bn=1.故bn+1=1-2an+1.由an+1=anbn+1,得an+1=an-2anan+1.由此知 是公差為2的等差數(shù)列.
(3)由 .,知 .所以 ,.依題意 恒成立.設(shè) ,所以只需求滿足k≤F(n)的F(n)的最小值.
點評:本題考查數(shù)列與解析幾何的綜合運用,難度較大,解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地選用公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標(biāo)原點,其中{an}、{bn}分別為等差數(shù)列和等比數(shù)列,P1是線段AB的中點,對于給定的公差不為零的an,都能找到唯一的一個bn,使得P1,P2,P3,…,Pn,…,都在一個指數(shù)函數(shù)
 
(寫出函數(shù)的解析式)的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點集L={(x,y)|y=
m
n
},其中
m
=(2x-b,1),
n
=(1,b+1),點列Pn(an,bn)(n∈N+)在L中,p1為L與y軸的交點,數(shù)列{an}是公差為1的等差數(shù)列.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,令Sn=f(1)+f(2)+f(3)+…+f(n),試寫出Sn關(guān)于n的表達(dá)式;
(Ⅲ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,給定奇數(shù)m(m為常數(shù),m∈N+,m>2).是否存在k∈N+,,使得
f(k+m)=2f(m),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數(shù)列{an}的公差為1,n∈N*
(I)求數(shù)列{bn}的通項公式;
(Ⅱ)若f(n)=
an  n為正奇數(shù)
bn  n為正偶數(shù)
,令Sn=f(1)+f(2)+f(3)+…+f(n);試寫出Sn關(guān)于n的函數(shù)解析式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知點列Pn(an,bn)∈L,P1為L與y軸的交點.等差數(shù)列{an}的公差為1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)對于數(shù)列{bn},設(shè)Sn是其前n項和,是否存在一個與n無關(guān)的常數(shù)M,使
Sn
S2n
=M
,若存在,求出此常數(shù)M,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數(shù)列{an}的公差為1,n∈N+
(1)求數(shù)列{an},{bn}的通項公式;
(2)若f(n)=
an(n=2k-1)
bn(n=2k)
(k∈N+)
,是否存在k∈N+使得f(k+11)=2f(k),若存在,求出k的值;若不存在,請說明理由.
(3)求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥2,n∈N*).

查看答案和解析>>

同步練習(xí)冊答案