分析 假設(shè)$\overrightarrow{BP}$=λ$\overrightarrow{BC}$,用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AP}$,使用平面向量的基本定理得出m,n與λ的關(guān)系,得到$\frac{1}{m}+\frac{1}{n}$關(guān)于λ的函數(shù),求出函數(shù)的最值.
解答 解:$\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}$=$\frac{1}{4}\overrightarrow{AB}+\overrightarrow{AD}$,$\overrightarrow{BC}$=$\overrightarrow{AC}-\overrightarrow{AB}$=-$\frac{3}{4}\overrightarrow{AB}$+$\overrightarrow{AD}$,
設(shè)$\overrightarrow{BP}$=λ$\overrightarrow{BC}$=-$\frac{3λ}{4}$$\overrightarrow{AB}$+λ$\overrightarrow{AD}$(0≤λ≤1),
則$\overrightarrow{AP}$=$\overrightarrow{AB}+\overrightarrow{BP}$=(1-$\frac{3λ}{4}$)$\overrightarrow{AB}$+λ$\overrightarrow{AD}$.
∵$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AD}$,∴m=1-$\frac{3λ}{4}$,n=λ.
∴$\frac{1}{m}+\frac{1}{n}$=$\frac{4}{4-3λ}+\frac{1}{λ}$=$\frac{λ+4}{-3{λ}^{2}+4λ}$=$\frac{1}{28-(3(λ+4)+\frac{64}{λ+4})}$≥$\frac{1}{28-2\sqrt{3×64}}$=$\frac{7+4\sqrt{3}}{4}$.
當(dāng)且僅當(dāng)3(λ+4)=$\frac{64}{λ+4}$即(λ+4)2=$\frac{64}{3}$時(shí)取等號(hào).
故答案為:$\frac{7+4\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題考查了平面向量的基本定理,向量的線性運(yùn)算的幾何意義,基本不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{\sqrt{5}}{5}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{8}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com