【題目】某手機(jī)賣場對市民進(jìn)行國產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取100名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如圖:

(Ⅰ)求頻率分布表中,的值,并補(bǔ)全頻率分布直方圖;

(Ⅱ)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加國產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這20人中隨機(jī)選取2人各贈送精美禮品一份,設(shè)這2名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學(xué)期望.

【答案】(1)見解析(2)

【解析】試題分析:

(1)結(jié)合頻率分布表和所給的頻率分布直方圖可得,然后補(bǔ)全頻率分布直方圖即可.

(2)由題意可得,抽取的人數(shù)為7人,可取0,1,2,據(jù)此列出分布列可得

試題解析:

解:(Ⅰ)由圖知, ,故;

,

. 

(Ⅱ)∵各層之間的比為,且共抽取20人,

∴年齡在內(nèi)抽取的人數(shù)為7人.

可取0,1,2,,,,

的分布列為:

0

1

2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記函數(shù)f(x)=log2(2x﹣3)的定義域?yàn)榧螹,函數(shù)g(x)=的定義域?yàn)榧螻.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,R(M∪N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sinx的圖象向右平移三個(gè)單位長度得到圖象C,再將圖象C上的所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍(縱坐標(biāo)不變)得到圖象C1 , 則C1的函數(shù)解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱中, 為底面的對角線, 的中點(diǎn).

(1)求證: ;

(2)求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)f(x)與g(x)相等的一組是( 。
A.f(x)=x﹣1,g(x)=﹣1
B.f(x)=x2 , g(x)=(4
C.f(x)=log2x2 , g(x)=2log2x
D.f(x)=tanx,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸與極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)且傾斜角為的直線與曲線相交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)無零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與y軸的正半軸相交于點(diǎn)M,且橢圓E上相異兩點(diǎn)A、B滿足直線MA,MB的斜率之積為

(Ⅰ)證明直線AB恒過定點(diǎn),并求定點(diǎn)的坐標(biāo);

(Ⅱ)求三角形ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx=|x+1|+|x-1|,不等式fx<4的解集為M.

1M.

2當(dāng)a,bM時(shí),證明:2|a+b|<|4+ab|.

查看答案和解析>>

同步練習(xí)冊答案