15.已知函數(shù)f(x)=(ex-1-1)(x-1),則( 。
A.當(dāng)x<0,有極大值為2-$\frac{4}{e}$B.當(dāng)x<0,有極小值為2-$\frac{4}{e}$
C.當(dāng)x>0,有極大值為0D.當(dāng)x>0,有極小值為0

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:f(x)=(ex-1-1)(x-1),
∴f′(x)=xex-1-1,
x>0時(shí),
令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,
故f(x)在(0,1)遞減,在(1,+∞)遞增,
故f(x)極小值=f(1)=0,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)M(a,b)在直線4x-3y+c=0上,若(a-1)2+(b-1)2的最小值為4,則實(shí)數(shù)c的值為( 。
A.-21或19B.-11或9C.-21或9D.-11或19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.空間直角坐標(biāo)系中,設(shè)A(-1,2,-3),B(-1,0,2),點(diǎn)M和點(diǎn)A關(guān)于y軸對(duì)稱,則|BM|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線y2-$\frac{{x}^{2}}{7}$=1的漸近線方程為(  )
A.y=±$\sqrt{7}$xB.y=±7xC.y=±$\frac{\sqrt{7}}{7}$xD.y=±$\frac{1}{7}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“?x∈R,x3-3x>0”的否定為( 。
A.?x∈R,x3-3x≤0B.?x∈R,x3-3x<0C.?x∈R,x3-3x≤0D.?x∈R,x3-3x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等差數(shù)列{an}中,a2=3,a7=13,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=$\frac{4}{3}$(4n-1).
(1)求an及bn
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.命題“若x>1,則x2>1”的逆否命題是若x2≤1,則x≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)($\frac{3}{2}$,-$\frac{\sqrt{6}}{2}$),且離心率為$\frac{\sqrt{3}}{3}$.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若點(diǎn)A(x1,y1),B(x2,y2)是橢圓C上的亮點(diǎn),且x1≠x2,點(diǎn)P(1,0),證明:△PAB不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面ABCD中,AB⊥平面ADE,CD⊥平面ADE,△ADE是等邊三角形,AD=DC=2AB=2,F(xiàn),G分別為AD,DE的中點(diǎn).
(Ⅰ)求證:EF⊥平面ABCD;
(Ⅱ)求四棱錐E-ABCD的體積;
(Ⅲ)判斷直線AG與平面BCE的位置關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案