已知向量=(3sin α,cos α),=(2sin α,5sin α-4cos α),α∈,且
(1)求tan α的值;
(2)求cos的值.
【答案】分析:( 1)通過向量關(guān)系,求=0,化簡后,求出tanα=-
(2)根據(jù)α的范圍,求出的范圍,確定的正弦、余弦的值,利用兩角和的余弦公式求出cos的值.
解答:解:(1)∵,∴=0.
=(3sinα,cosα),=(2sinα,5sinα-4cosα),
=6sin2α+5sinαcosα-4cos2α=0.
由于cosα≠0,∴6tan2α+5tanα-4=0.
解之,得tanα=-,或tanα=
∵α∈(),tanα<0,
故tanα=(舍去).
∴tanα=-
(2)∵
由tanα=-,求得tan=-或tan=2(舍去)
∴sin,cos
cos()=coscos-sinsin
==-
點(diǎn)評:本題考查兩角和與差的余弦函數(shù),數(shù)量積的坐標(biāo)表達(dá)式,弦切互化,考查計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
,若f(x)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)當(dāng)0<x≤
π
3
時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3sin α,cos α),
b
=(2sin α,5sin α-4cos α),α∈(
2
,2π)
,且
a
b

(1)求tan α的值;
(2)求cos(
α
2
+
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx),(ω>0),函數(shù)f(x)=
a
b
+
1
2
的圖象的兩相鄰對稱軸間的距離為
π
4

(1)求ω值;
(2)若x∈(
7
24
π,
5
12
π)
時,f(x)=-
3
5
,求cos4x的值;
(3)若cosx≥
1
2
,x∈(0,π),且f(x)=m有且僅有一個實(shí)根,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
-
1
2
已知f(x)的最小正周期為π.
(1)求ω;
(2)求f(x)的單調(diào)區(qū)間;對稱軸方程;對稱中心坐標(biāo);
(3)當(dāng)0<x≤
π
3
時,試求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,設(shè)f(x)=
a
b
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)函數(shù)f(x)的圖象可由函數(shù)y=sin2x經(jīng)過怎樣的變換得到.

查看答案和解析>>

同步練習(xí)冊答案