(本小題滿分16分)設(shè)數(shù)列的前n項和為,數(shù)列滿足: ,且數(shù)列的前
n項和為.
(1) 求的值;
(2) 求證:數(shù)列是等比數(shù)列;
(3) 抽去數(shù)列中的第1項,第4項,第7項,……,第3n-2項,……余下的項順序不變,組成一個新數(shù)列,若的前n項和為,求證:.
解:(1)由題意得: ;………………1分
當n=1時,則有: 解得: ;
當n=2時,則有: ,即,解得: ;
………………2分
(2)由 ①得:
 ②  ………………3分
② - ①得: ,
即:  即:; ……………5分
,由知:
數(shù)列是以4為首項,2為公比的等比數(shù)列.…………………………………8分
(3)由(2)知: ,即……………………9分
當n≥2時, 對n=1也成立,
(n………………………………………………………….…10分
數(shù)列,它的奇數(shù)項組成以4為首項、公比為8的等比數(shù)列;偶數(shù)項組成以8為首項、公比為8的等比數(shù)列;…………………11分
當n="2k-1" 時,
                                                        …………………14分
當n="2k" 時,

.……………………………………………………………16分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列{}的公差為d,等比數(shù)列{}的公比為q,且,),若,求a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知數(shù)列、的前n項和分別為,
且滿足.
(Ⅰ)求、的值,并證明數(shù)列是等比數(shù)列;
(Ⅱ)試確定實數(shù)的值,使數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)
設(shè)數(shù)列中,若,則稱數(shù)列為“凸數(shù)列”。
(1)設(shè)數(shù)列為“凸數(shù)列”,若,試寫出該數(shù)列的前6項,并求出該6項之和;
(2)在“凸數(shù)列”中,求證:;
(3)設(shè),若數(shù)列為“凸數(shù)列”,求數(shù)列前2010項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列的前n項和為,且滿足
(1)求的值;
(2)求數(shù)列的通項公式;
(3)若的前n項和為求滿足不等式   的最小n值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)則數(shù)列從首項到第幾項的和最大(     )
A.10B.11 C.10或11D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若數(shù)列中,=1,="3+5," =7+9+11,=13+15+17+19,…,則=           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列中,,則前項的和(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個凸邊形的內(nèi)角的度數(shù)成等差數(shù)列,若公差是,且最大角是,則為(   ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案