16.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,且(2b-$\sqrt{3}$c)cosA=$\sqrt{3}$acosC,則角A的大小為(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 利用正弦定理、和差公式、三角形內(nèi)角和定理即可得出.

解答 解:∵(2b-$\sqrt{3}$c)cosA=$\sqrt{3}$acosC,
∴(2sinB-$\sqrt{3}$sinC)cosA=$\sqrt{3}$sinAcosC,
∴2sinBcosA=$\sqrt{3}$(sinCcosA+sinAcosC)=$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB,
∵sinB≠0,∴cosA=$\frac{\sqrt{3}}{2}$,A∈(0,π),
∴A=$\frac{π}{6}$.
故選:B.

點評 本題考查了正弦定理、和差公式、三角形內(nèi)角和定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知集合A≠∅,B={1,2,3,4,5,6,7},若x∈A,必有x∈B,且8-x∈A成立,則集合A最多有15個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知過點(2,4)的直線l被圓C:x2+y2-2x-4y-5=0截得的弦長為6,則直線l的方程為x-2=0或3x-4y+10=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知圓C:x2+y2=3,從點A(-2,0)觀察點B(2,a),要使視線不被圓C擋住,則a的取值范圍是( 。
A.(-∞,-$\frac{4\sqrt{3}}{3}$)∪($\frac{4\sqrt{3}}{3}$,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞)D.(-∞,-4$\sqrt{3}$)∪(4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓O:x2+y2=9及點C(2,1).
(1)若線段OC的垂直平分線交圓O于A,B兩點,試判斷四邊形OACB的形狀,并給予證明;
(2)過點C的直線l與圓O交于P,Q兩點,當△OPQ的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列{an}滿足a1=2,a2=3,an+2=|an+1-an|,則a2016=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導數(shù)f′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.”請你將這一發(fā)現(xiàn)作為條件,求若函數(shù)g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{1}{x-\frac{1}{2}}$,則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=2016.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a-b}\end{array}\right.$,若實數(shù)x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,則max{|2x+1|,|x-2y+5|}的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在三棱錐P-ABC中,PA=PC=5,PB=4,AB=BC=2$\sqrt{3}$,∠ACB=30°.
(1)求證:AC⊥PB;
(2)求三棱錐P-ABC的體積.

查看答案和解析>>

同步練習冊答案