甲、乙兩人玩猜數字游戲,規(guī)則如下:
①連續(xù)競猜3次,每次相互獨立;
②每次競猜時,先由甲寫出一個數字,記為a,再由乙猜甲寫的數字,記為b,已知a,b∈{0,1,2,3,4,5},若|a-b|≤1,則本次競猜成功;
③在3次競猜中,至少有2次競猜成功,則兩人獲獎.
求甲乙兩人玩此游戲獲獎的概率.
科目:高中數學 來源: 題型:解答題
某校高一、高二兩個年級進行乒乓球對抗賽,每個年級選出3名學生組成代表隊,比賽規(guī)則是:①按“單打、雙打、單打”順序進行三盤比賽;②代表隊中每名隊員至少參加一盤比賽,但不能參加兩盤單打比賽.若每盤比賽中高一、高二獲勝的概率分別為,.
(1)按比賽規(guī)則,高一年級代表隊可以派出多少種不同的出場陣容?
(2)若單打獲勝得2分,雙打獲勝得3分,求高一年級得分ξ的概率分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經銷商經銷某種農產品,在一個銷售季度內,每售出1 t該產品獲利潤500元,未售出的產品,每1 t虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示.經銷商為下一個銷售季度購進了130 t該農產品.以X(單位: t,100≤X≤150)表示下一個銷售季度內的市場需求量,T(單位:元)表示下一個銷售季度內經銷該農產品的利潤.
(1)將T表示為X的函數;
(2)根據直方圖估計利潤T不少于57 000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若x∈[100,110),則取X=105,且X=105的概率等于需求量落入[100,110)的頻率,求T的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某種產品的質量以其質量指標值衡量,質量指標值越大表明質量越好,且質量指標值大于或等于102的產品為優(yōu)質品.現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗,各生產了100件這種產品,并測量了每件產品的質量指標值,得到下面試驗結果:
A配方的頻數分布表
指標值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
頻數 | 8 | 20 | 42 | 22 | 8 |
指標值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
頻數 | 4 | 12 | 42 | 32 | 10 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某校為組建;@球隊,對報名同學進行定點投籃測試,規(guī)定每位同學最多投3次,每次在A或B處投籃,在A處投進一球得3分,在B處投進一球得2分,否則得0分,每次投籃結果相互獨立,將得分逐次累加并用X表示,如果X的值不低于3分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃方案有以下兩種:
方案1:先在A處投一球,以后都在B處投;
方案2:都在B處投籃.
已知甲同學在A處投籃的命中率為0.4,在B處投籃的命中率為0.6.
(1)甲同學若選擇方案1,求X=2時的概率;
(2)甲同學若選擇方案2,求X的分布列和數學期望;
(3)甲同學選擇哪種方案通過測試的可能性更大?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下列表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | | 5 | |
女生 | 10 | | |
合計 | | | 50 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
本著健康、低碳的生活理念,租自行車騎游的人越來越多。某自行車租車點的收費標準是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費標準為2元(不足1小時的部分按1小時計算)。有甲乙兩人相互獨立來該租車點租車騎游(各租一車一次),設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為;兩人租車時間都不會超過四小時.
(1)求出甲、乙兩人所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量,求的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠甲、乙兩個車間包裝同一種產品,在自動包裝傳送帶上每隔小時抽一包產品,稱其重量(單位:克)是否合格,分別記錄抽查數據,獲得重量數據的莖葉圖如圖所示.
(1)根據樣品數據,計算甲、乙兩個車間產品重量的平均值與方差,并說明哪個車間的產品的重量相對較穩(wěn)定;
(2)若從乙車間件樣品中隨機抽取兩件,求所抽取的兩件樣品的重量之差不超過克的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數f(x)=x2+bx+c,其中b,c是某范圍內的隨機數,分別在下列條件下,求事件A“f(1)≤5且f(0)≤3”發(fā)生的概率.
(1)若隨機數b,c∈{1,2,3,4}.
(2)已知隨機函數Rand( )產生的隨機數的范圍為{x|0≤x≤1},b,c是算法語句b="4*Rand(" )和c="4*Rand(" )的執(zhí)行結果.(注:符號“*”表示“乘號”)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com