拋物線y=ax2+bx在第一象限內(nèi)與直線x+y=4相切.此拋物線與x軸所圍成的圖形的面積記為S.求使S達(dá)到最大值的a、b值,并求Smax

解析:依題設(shè)可知拋物線為凸形,它與x軸的交點(diǎn)的橫坐標(biāo)分別為x1=0,x2=-b/a,所以(1)

又直線x+y=4與拋物線y=ax2+bx相切,即它們有唯一的公共點(diǎn),

由方程組

得ax2+(b+1)x-4=0,其判別式必須為0,即(b+1)2+16a=0.

于是代入(1)式得:

; 

令S'(b)=0;在b>0時(shí)得唯一駐點(diǎn)b=3,且當(dāng)0<b<3時(shí),S'(b)>0;當(dāng)b>3時(shí),S'(b)<0.故在b=3時(shí),S(b)取得極大值,也是最大值,即a=-1,b=3時(shí),S取得最大值,且
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,-3)為△OAB的直角頂點(diǎn),若|AB|=2|OA|,且點(diǎn)B的縱坐標(biāo)大于0
(1)求向量
AB
的坐標(biāo);
(2)是否存在實(shí)數(shù)a,使得拋物線y=ax2-1上總有關(guān)于直線OB對稱的兩個(gè)點(diǎn)?若存在,求實(shí)數(shù)a的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a<b<c且a+b+c=0,則拋物線y=ax2+bx+c與x軸交點(diǎn)的個(gè)數(shù)必為
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c與直線y=-bx交于A、B兩點(diǎn),其中a>b>c,a+b+c=0,設(shè)線段AB在x軸上的射影為A1B1,則|A1B1|的取值范圍是( 。
A、(
3
,   2
3
)
B、(
3
,   +∞)
C、(0,   
3
)
D、(2,   2
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=ax2的焦點(diǎn)坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=ax2(a≠0)的焦點(diǎn)坐標(biāo)是( 。
A、(
a
4
,0)
B、(-
a
4
,0)
C、(0,-
1
4a
)
D、(0,
1
4a
)

查看答案和解析>>

同步練習(xí)冊答案