已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈R)
.試在曲線C上求一點(diǎn)M,使它到直線l的距離最大.
分析:先利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,將極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3化成直角坐標(biāo)方程,再消去參數(shù)t將直線l的參數(shù)方程化成普通方程,最后利用設(shè)點(diǎn)M的坐標(biāo)的參數(shù)形式,結(jié)合點(diǎn)到直線的距離公式求解即得.
解答:解:曲線C的普通方程是
x2
3
+y2=1
.(2分)
直線l的普通方程是x+
3
y-
3
=0
.(4分)
設(shè)點(diǎn)M的坐標(biāo)是(
3
cosθ,sinθ),則點(diǎn)M到直線l
的距離是d=
|
3
cosθ+
3
sinθ-
3
|
2
=
3
|
2
sin(θ+
π
4
)-1|
2
.(6分)
因?yàn)?
2
2
sin(θ+
π
4
)≤
2
,所以

當(dāng)sin(θ+
π
4
)=-1,即θ+
π
4
=2kπ-
π
2
(k∈Z),即θ=2kπ-
4
(k∈Z)時(shí)
,
d取得最大值.(8分)
此時(shí)
3
cosθ=-
6
2
,sinθ=-
2
2

綜上,點(diǎn)M的坐標(biāo)為(-
6
2
,-
2
2
)時(shí),距離最大.(10分)
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)、參數(shù)方程和直角坐標(biāo)的互化、點(diǎn)到直線的距離公式以及三角函數(shù)最值的求法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸的正半軸重合.直線l的參數(shù)方程為:
x=-1+
3
2
t
y=
1
2
t       
(t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(Ⅰ)寫出C的直角坐標(biāo)方程,并指出C是什么曲線;
(Ⅱ)設(shè)直線l與曲線C相交于P、Q兩點(diǎn),求|PQ|值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線l,過(guò)A作l的垂線AD,AD分別與直線l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線段AE的長(zhǎng).
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個(gè)特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈{R}).試求曲線C上點(diǎn)M到直線l的距離的最大值.
D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3;
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請(qǐng)給出證明;如果不成立,請(qǐng)舉出一個(gè)使它不成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
(B)(選修4-2:矩陣與變換)
二階矩陣M有特征值λ=8,其對(duì)應(yīng)的一個(gè)特征向量e=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成點(diǎn)(-2,4),求矩陣M2
(C)(選修4-4:坐標(biāo)系與參數(shù)方程)
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈R).試在曲線C上一點(diǎn)M,使它到直線l的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的非負(fù)半軸重合.曲線C1的極坐標(biāo)方程為ρsin2θ=2cosθ,曲線C2的參數(shù)方程為
x=2+tcosα
y=tsinα
(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及α=
π
3
時(shí)曲線C2的普通方程;
(2)設(shè)E(2,0),曲線C1與C2交于點(diǎn)M、N,若ME=2NE,求MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,直線l的參數(shù)方程為
x=tcosα
y=tsinα.
(t為參數(shù),α為直線l的傾斜角),圓C的極坐標(biāo)方程為ρ2-8ρcosθ+12=0.若直線l與圓有公共點(diǎn),則傾斜角α的范圍為
[0,
π
6
]∪[
6
,π)
[0,
π
6
]∪[
6
,π)

查看答案和解析>>

同步練習(xí)冊(cè)答案