雙曲線
的離心率為( )
試題分析:雙曲線化成標(biāo)準(zhǔn)式為
,所以
,
,所以
,所以離心率
,選D.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓
直線
與圓
相切,且交橢圓
于
兩點(diǎn),
是橢圓的半焦距,
,
(Ⅰ)求
的值;
(Ⅱ)O為坐標(biāo)原點(diǎn),若
求橢圓
的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓
的左右頂點(diǎn)分別為A,B,動點(diǎn)
,直線AS,BS與直線
分別交于M,N兩點(diǎn),求線段MN的長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點(diǎn)
,
是拋物線
上相異兩點(diǎn),且滿足
.
(Ⅰ)若
的中垂線經(jīng)過點(diǎn)
,求直線
的方程;
(Ⅱ)若
的中垂線交
軸于點(diǎn)
,求
的面積的最大值及此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓
的左右頂點(diǎn)分別為
,離心率
.過該橢圓上任一點(diǎn)
作
軸,垂足為
,點(diǎn)
在
的延長線上,且
.
(1)求橢圓的方程;
(2)求動點(diǎn)
的軌跡
的方程;
(3)設(shè)直線
(
點(diǎn)不同于
)與直線
交于點(diǎn)
,
為線段
的中點(diǎn),試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,曲線
與曲線
相交于
、
、
、
四個點(diǎn).
⑴ 求
的取值范圍;
⑵ 求四邊形
的面積的最大值及此時(shí)對角線
與
的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知動點(diǎn)
與定點(diǎn)
的距離和它到直線
的距離之比是常數(shù)
,記
的軌跡為曲線
.
(I)求曲線
的方程;
(II)設(shè)直線
與曲線
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,試問:當(dāng)
變化時(shí),直線
與
軸是否交于一個定點(diǎn)?若是,請寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)
、
為雙曲線
的兩個焦點(diǎn),點(diǎn)
在此雙曲線上,
,如果此雙曲線的離心率等于
,那么點(diǎn)
到
軸的距離等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x =﹣2,則拋物線的方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
直線
與橢圓
相交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)當(dāng)點(diǎn)
的坐標(biāo)為
,且四邊形
為菱形時(shí),求
的長;
(Ⅱ)當(dāng)點(diǎn)
在
上且不是
的頂點(diǎn)時(shí),證明:四邊形
不可能為菱形.
查看答案和解析>>