已知動點(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,試問:當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
(I);(II)對于任意的,直線軸交于定點(diǎn)

試題分析:(I)找出題中的相等關(guān)系,列出,化簡即得曲線的方程;(II)將直線方程代入曲線方程,消去,記,則,且.特別地,令,則.此時(shí),直線軸的交點(diǎn)為.若直線軸交于一個(gè)定點(diǎn),則定點(diǎn)只能為.再證明對于任意的,直線軸交于定點(diǎn),可利用直線的兩點(diǎn)式方程結(jié)合分析法.
試題解析:(I)設(shè)是點(diǎn)到直線的距離,根據(jù)題意,點(diǎn)的軌跡就是集合
  
由此得       
將上式兩邊平方,并化簡得
,所以曲線的方程為   
(II)由,即.  
,
,且.
特別地,令,則.
此時(shí),直線軸的交點(diǎn)為. 
若直線軸交于一個(gè)定點(diǎn),則定點(diǎn)只能為
以下證明對于任意的,直線軸交于定點(diǎn)
事實(shí)上,經(jīng)過點(diǎn)的直線方程為.
,得只需證,   
即證,即證.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240211489741114.png" style="vertical-align:middle;" />,
所以成立.
這說明,當(dāng)變化時(shí),直線軸交于定點(diǎn).  …
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為.從這個(gè)圓上任意一點(diǎn)軸作垂線,為垂足.
(Ⅰ)求線段中點(diǎn)的軌跡方程;
(Ⅱ)已知直線的軌跡相交于兩點(diǎn),求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點(diǎn)到定點(diǎn)的距離之和為.
(Ⅰ)求動點(diǎn)軌跡的方程;
(Ⅱ)設(shè),過點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中心為, 一個(gè)焦點(diǎn)為的橢圓,截直線所得弦中點(diǎn)的橫坐標(biāo)為,則該橢圓方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線上一點(diǎn)到焦點(diǎn)的距離為4,則點(diǎn)的橫坐標(biāo)為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P為“C1—C2型點(diǎn)”.

(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線,,過的直線分別交于,若是線段的中點(diǎn),則等于(  )
A.12B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案