分析 (1)求導(dǎo)數(shù)f′(x),可得切線斜率,切點為(1,0),由點斜式可求切線方程;
(2)由f(x)在(0,+∞)上為單調(diào)增函數(shù),知f'(x)≥0在(0,+∞)上恒成立,分離出參數(shù)a后,轉(zhuǎn)化為求函數(shù)的最值.
解答 解:(1)當(dāng)a=1時,f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$,
∴f′(1)=0,f(1)=0,
∴曲線y=f(x)在點(1,f(1))處的切線方程是y=0;
(2)f′(x)=$\frac{1}{x}$-$\frac{1}{a{x}^{2}}$,
∵函數(shù)f(x)是[1,+∞)上為增函數(shù),
∴$\frac{1}{x}$-$\frac{1}{a{x}^{2}}$≥0在[1,+∞)上恒成立,
∴a≥$\frac{1}{x}$在[1,+∞)上恒成立,
∴a≥1.
點評 該題考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)恒成立,考查轉(zhuǎn)化思想.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
累積凈化量(克) | (3,5] | (5,8] | (8,12] | 12以上 |
等級 | P1 | P2 | P3 | P4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x+3 | B. | y=2x-3 | C. | y=-2x+3 | D. | y=-2x-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com