【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).

(1)當(dāng)a=時(shí),求f(x)在區(qū)間[1e]上的最大值和最小值;

(2)如果函數(shù)g(x),f1x),f2(x),在公共定義域D上,滿足f1x)<gx)<f2(x),那么就稱g(x)為f1x),f2(x)的“活動函數(shù)”.已知函數(shù). 。若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1x),f2(x)的“活動函數(shù)”,求a的取值范圍.

【答案】(1) (2)a的范圍是 .

【解析】試題分析:(1)由題意得 f(x)=x2+lnx, ,f(x)在區(qū)間[1,e]上為增函數(shù),即可求出函數(shù)的最值.

(2)由題意得:令 fx f2x= ,對x1,+∞)恒成立,且h(x)=f1xfx=對x1,+∞)恒成立, 分類討論當(dāng) 時(shí)兩種情況求函數(shù)的最大值,可得到a的范圍.又因?yàn)閔′(x)=﹣x+2a=

h(x)在(1,+∞)上為減函數(shù),可得到a的另一個(gè)范圍,綜合可得a的范圍.

試題解析:

(1)當(dāng) 時(shí),;

對于x∈[1,e],有f'(x)>0,∴f(x)在區(qū)間[1,e]上為增函數(shù),

(2)在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“活動函數(shù)”,則f1(x)<f(x)<f2(x)令 <0,對x∈(1,+∞)恒成立,

且h(x)=f1(x)﹣f(x)=<0對x∈(1,+∞)恒成立,

,令p′(x)=0,得極值點(diǎn)x1=1,,

當(dāng)x2>x1=1,即 時(shí),在(x2,+∞)上有p′(x)>0,

此時(shí)p(x)在區(qū)間(x2,+∞)上是增函數(shù),并且在該區(qū)間上有p(x)∈(p(x2),+∞),不合題意;

當(dāng)x2<x1=1,即a≥1時(shí),同理可知,p(x)在區(qū)間(1,+∞)上,有p(x)∈(p(1),+∞),也不合題意;

,則有2a﹣1≤0,此時(shí)在區(qū)間(1,+∞)上恒有p′(x)<0,

從而p(x)在區(qū)間(1,+∞)上是減函數(shù);

要使p(x)<0在此區(qū)間上恒成立,只須滿足 ,

所以 ≤a≤

又因?yàn)閔′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上為減函數(shù),

h(x)<h(1)=+2a≤0,所以a≤

綜合可知a的范圍是[,].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求;

2)設(shè),記數(shù)列的前項(xiàng)和為

①求;

②求正整數(shù) k,使得對任意均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中表示同一個(gè)函數(shù)的是(
A.f(x)=|x|與
B.f(x)=x0與g(x)=1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),求證:對任意,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e為自然對數(shù)的底數(shù))

(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)f(x)在 上無零點(diǎn),求a的最小值;

(Ⅲ)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x2+bx+c且f(0)=f(2),則(
A.f(﹣2)<f(0)<f(
B.f( )<f(0)<f(﹣2)??
C.f( )<f(﹣2)<f(0)
D.f(0)<f( )<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時(shí)的x值
(2)求f(x)的單調(diào)減區(qū)間
(3)若x∈[﹣ ]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率.

(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場宣傳活動,應(yīng)從第3,4,5組各抽取多少名志愿者?

(3)在(2)的條件下,我市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax﹣ax(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)= ,g(x)=a2x+a2x﹣2mf(x)且g(x)在[1,+∞)上的最小值為﹣2,求m的值.

查看答案和解析>>

同步練習(xí)冊答案