實(shí)數(shù)x,y滿足條件
x+y-4≤0
x-2y+2≥0
x≥0
y≥0
,則22x-y的最小值為( 。
A、
1
4
B、
1
2
C、1
D、4
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:設(shè)z=2x-y,利用數(shù)形結(jié)合求出z的最小值即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖,設(shè)z=2x-y,
由z=2x-y得y=2x-z,
平移直線y=2x-z,
由圖象可知當(dāng)直線y=2x-z經(jīng)過點(diǎn)C(0,1)時(shí),直線y=2x-z的截距最大,
此時(shí)z最。
將A(0,1)的坐標(biāo)代入目標(biāo)函數(shù)z=0-1=-1,
即z=2x-y的最小值為-1,此時(shí)22x-y的最小值為
1
2

故選:B.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是(  )
A、命題“若x2-5x+6=0,則x=2”的逆命題是“若x≠2,則x2-5x+6≠0”
B、對命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,則x2+x+1<0
C、著實(shí)數(shù)x,y∈[0,1],則滿足
x2+y2<1
x+y≥1
的概率是
π
4
-
1
2
D、已知a=
π
0
sinxdx,則點(diǎn)(
3
,a)到直線
3
x-y+1=0的距離為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又在其定義域內(nèi)是增函數(shù)的是( 。
A、f(x)=cosx
B、f(x)=sinx+x
C、f(x)=x2+1
D、f(x)=x3-3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x+3y-1=0的兩側(cè),且a>0,b>0,則
a-1
b
的取值范圍是( 。
A、(-∞,-3)
B、(-
1
3
,0)
C、(3,+∞)
D、(0,
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
BA
=(1,2),
CA
=(4,x),且
BA
CA
共線,則
BC
=( 。
A、(-3,-6)
B、(3,6)
C、(5,10)
D、(-3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的直觀圖如圖所示,該幾何體的主(正)視圖和左(側(cè))視圖都正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD所在的平面與平面ABF互相垂直,在△ABF中,AB=
3
,AF=2,BF=1,O、P分別為AC和AF的中點(diǎn).
(1)求證:AB⊥CF;
(2)若四棱錐F-ABCD的體積為1,求直線OP與平面ABF所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,e為自然對數(shù)的底數(shù),函數(shù)f(x)=
(-2x3+3ax2+6ax-4a2-6a)•ex,x≤1
[(6a-1)lnx+x+
a
x
+15a]•e,x>1

(Ⅰ)當(dāng)a=0時(shí),求f(x)在x=e處的切線方程;
(Ⅱ)當(dāng)a<-1時(shí),是否存在a使f(x)在[a,-a]上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1+a3=10,a4+a6=
5
4
,求an和S4

查看答案和解析>>

同步練習(xí)冊答案