(本題滿分16分)

如圖,開(kāi)發(fā)商欲對(duì)邊長(zhǎng)為的正方形地段進(jìn)行市場(chǎng)開(kāi)發(fā),擬在該地段的一角建設(shè)一個(gè)景觀,需要建一條道路(點(diǎn)分別在上),根據(jù)規(guī)劃要求的周長(zhǎng)為

(1)設(shè),求證:;

(2)欲使的面積最小,試確定點(diǎn)的位置.

 

【答案】

(1),則,

由已知得:, (2)當(dāng)時(shí),的面積最小.

【解析】

試題分析:(1),

由已知得:,

…………………………4分

,                     …………………………8分

(2)由(1)知,

=

=.            …………………………………………………12分

,,即時(shí)的面積最小,最小面積為

,故此時(shí)   …………14分

所以,當(dāng)時(shí),的面積最。16分

考點(diǎn):本題考查了三角函數(shù)的實(shí)際運(yùn)用

點(diǎn)評(píng):對(duì)于三角函數(shù)的證明和應(yīng)用問(wèn)題,除了要求學(xué)生掌握常見(jiàn)的三角變換公式之外,還要掌握三角函數(shù)的性質(zhì)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題滿分16分)兩個(gè)數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù)、是常數(shù),且),對(duì)定義域內(nèi)任意、),恒有成立.

(1)求函數(shù)的解析式,并寫(xiě)出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,

 .(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省私立無(wú)錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案