已知直線l:y=mx+1與曲線C:ax2+y2=2(m、a∈R)交于A、B兩點,O為坐標原點.
(1)當m=0時,有∠AOB=
π
3
,求曲線C的方程;
(2)當實數(shù)a為何值時,對任意m∈R,都有
OA
OB
為定值T?指出T的值;
(3)已知點M(0,-1),當a=-2,m變化時,動點P滿足
MP
=
OA
+
OB
,求動點P的縱坐標的變化范圍.
(1)當m=0時,聯(lián)立方程可得:ax2=1,∴x=±
1
a

A(
1
a
,1)
,B(-
1
a
,1)
,∵∠AOB=
π
3
,∴
1
2
=
-
1
a
+1
1
a
+1
解得:a=3,
∴方程為
3x2
2
+
y2
2
=1

(2)設A、B兩點坐標為(x1,y1)、(x2,y2),聯(lián)立方程:
y=mx+1
ax2+y2=2
可得:
(a+m2)x2+2mx-1=0
x1+x2=-
2m
a+m2
x1x2=-
1
a+m2

OA
OB
=x1x2+y1y2=x1x2+(mx1+1)(mx2+1)
=(m2+1)x1x2+m(x1+x2)+1=-
m2+1
a+m2
-
2m2
a+m2
+1=
a-2m2-1
a+m2

要使
OA
OB
=T
,則-2m2+(a-1)=Tm2+Ta∴T=-2且a-1=Ta即a=
1
3
且T=-2
而當a=
1
3
時,
1
3
+m2≠0
△=4m2+4(
1
3
+m2)=8m2+
4
3
>0
恒成立∴當實數(shù)a=
1
3
時,對任意m∈R,都有
OA
OB
=-2

(3)設P(x,y),∴
MP
=(x,y+1)
,∴y+1=y1+y2=m(x1+x2)+2=
4
2-m2
y=
2+m2
2-m2

又對方程(m2-2)x2+2mx-1=0,△=8m2-8>0,∴m2>1且m2≠2
y=-1+
4
2-m2
,∴y>3或y<-1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為.
(1)若原點到直線的距離為,求橢圓的方程;
(2)設過橢圓的右焦點且傾斜角為的直線和橢圓交于A,B兩點.
,求b的值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右頂點分別是,左、右焦點分別是、.若,成等比數(shù)列,求此橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

到空間兩點A(-1,1,0),B(2,-1,-1)等距離的點的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在平面斜坐標系xoy中∠xoy=45°,點P的斜坐標定義為:“若
OP
=x0
e1
+y0
e2
(其中,
e1
,
e2
分別為與斜坐標系的x軸,y軸同方向的單位向量),則點P的坐標為(x0,y0)”.若F1(-1,0),F(xiàn)2(1,0)且動點M(x,y)滿足|
MF1
|=|
MF2
|,則點M在斜坐標系中的軌跡方程為(  )
A.x=0B.y=0C.
2
x+y=0
D.
2
x-y=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若一動點M與定直線l:x=
16
5
及定點A(5,0)的距離比是4:5.
(1)求動點M的軌跡C的方程;
(2)設所求軌跡C上有點P與兩定點A和B(-5,0)的連線互相垂直,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知O是坐標原點,點A(2,0),△AOC的頂點C在曲線y2=4(x-1)上,那么△AOC的重心G的軌跡方程是( 。
A.3y2=4(x-1)B.3y2=4(x-1)(y≠0)
C.
y2
3
=4(x-1)
D.
y2
3
=4(x-1)(y≠0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓E:=1(a>b>0)的上焦點是F1,過點P(3,4)和F1作直線PF1交橢圓于A,B兩點,已知A(,).
(1)求橢圓E的方程;
(2)設點C是橢圓E上到直線PF1距離最遠的點,求C點的坐標.

查看答案和解析>>

同步練習冊答案