【題目】已知 是平面內(nèi)凸三十五邊形的35個(gè)頂點(diǎn),且中任何兩點(diǎn)之間的距離不小于 . 證明:從這35個(gè)點(diǎn)中可以選出五個(gè)點(diǎn),使得這五個(gè)點(diǎn)中任意兩點(diǎn)之間的距離不小于3.
【答案】見解析
【解析】
先證明一個(gè)引理
引理 設(shè) 為 這35個(gè)點(diǎn)中的任意一點(diǎn).則在余下的34個(gè)點(diǎn)中,至多六個(gè)點(diǎn)與點(diǎn)的距離小于3.
證明 用反證法.
如圖,假設(shè)有7個(gè)點(diǎn)(不妨設(shè)為)與點(diǎn)的距離小于3.
由題設(shè)知.
故 這六個(gè)角中至少有一個(gè)角不大于(不妨設(shè)).
設(shè),.則.
根據(jù)對(duì)稱性不妨設(shè).
由于,因此,
在區(qū)間)上為增函數(shù).
故.
從而,與條件矛盾.
回到原題.
根據(jù)引理,從點(diǎn)出發(fā)的34條線段中至多有6條線段的長度小于3,即至少有28條線段的長度不小于3.不妨設(shè)線段的長度不小于3.
再考慮從點(diǎn)出發(fā)的27條線段.同理,至少有21條線段的長度不小于3.不妨設(shè)線段的長度不小于3.
再考慮從點(diǎn)出發(fā)的20條線段.同理,至少有14條線段的長度不小于3.不妨設(shè)線段的長度不小于3.
再考慮從點(diǎn)出發(fā)的13條線段.同理,至少有7條線段的長度不小于3.不妨設(shè)線段的長度不小于3.
這樣得到五個(gè)點(diǎn)、、、、 ,其中任意兩點(diǎn)之間的距離不小于3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向左平移個(gè)單位,再把圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到的圖象,則關(guān)于的圖象,下列結(jié)論不正確的是
A. 周期為 B. 關(guān)于點(diǎn)對(duì)稱
C. 在單調(diào)遞增 D. 在單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,在高三年級(jí)中隨機(jī)選取名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于小時(shí)的有人,在這人中分?jǐn)?shù)不足分的有人;在每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不足于小時(shí)的人中,在檢測考試中數(shù)學(xué)平均成績不足分的占.
(1)請(qǐng)完成列聯(lián)表;并判斷是否有的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;
分?jǐn)?shù)不少于分 | 分?jǐn)?shù)不足分 | 合計(jì) | |
線上學(xué)習(xí)時(shí)間不少于小時(shí) | |||
線上學(xué)習(xí)時(shí)間不足小時(shí) | |||
合計(jì) |
(2)在上述樣本中從分?jǐn)?shù)不足于分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于小時(shí)和線上學(xué)習(xí)時(shí)間不足小時(shí)的學(xué)生共名,若在這名學(xué)生中隨機(jī)抽取人,求這人每周線上學(xué)習(xí)時(shí)間都不足小時(shí)的概率.(臨界值表僅供參考)
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拿破侖為人好學(xué),是法蘭西科學(xué)院院士,他對(duì)數(shù)學(xué)方面很感興趣,在行軍打仗的空閑時(shí)間,經(jīng)常研究平面幾何。他提出了著名的拿破侖定理:以三角形各邊為邊分別向外(內(nèi))側(cè)作等邊三角形,則它們的中心構(gòu)成一個(gè)等邊三角形。如圖所示,以等邊的三條邊為邊,向外作個(gè)正三角形,取它們的中心,順次連接,得到,圖中陰影部分為與的公共部分。若往中投擲一點(diǎn),則該點(diǎn)落在陰影部分內(nèi)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年“雙十一”期間,某商場舉辦了一次有獎(jiǎng)促銷活動(dòng),顧客消費(fèi)每滿1000元可參加一次抽獎(jiǎng)(例如:顧客甲消費(fèi)930元,不得參與抽獎(jiǎng);顧客乙消費(fèi)3400元,可以抽獎(jiǎng)三次)。如圖1,在圓盤上繪制了標(biāo)有A,B,C,D的八個(gè)扇形區(qū)域,每次抽獎(jiǎng)時(shí)由顧客按動(dòng)按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時(shí)指針會(huì)隨機(jī)停在圓盤上的某一個(gè)位置,顧客獲獎(jiǎng)的獎(jiǎng)次由指針?biāo)竻^(qū)域決定(指針與區(qū)域邊界線粗細(xì)忽略不計(jì))。商家規(guī)定:指針停在標(biāo)A,B,C,D的扇形區(qū)域分別對(duì)應(yīng)的獎(jiǎng)金為200元、150元、100元和50元。已知標(biāo)有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標(biāo)D的扇形區(qū)域的圓心角是標(biāo)A的扇形區(qū)域的圓心角的4倍.
(I)某顧客只抽獎(jiǎng)一次,設(shè)該顧客抽獎(jiǎng)所獲得的獎(jiǎng)金數(shù)為X元,求X的分布列和數(shù)學(xué)期望;
(II)如圖2,該商場統(tǒng)計(jì)了活動(dòng)期間一天的顧客消費(fèi)情況.現(xiàn)按照消費(fèi)金額分層抽樣選出15位顧客代表,其中獲得獎(jiǎng)金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機(jī)選取兩位,求這兩位顧客的獎(jiǎng)金總數(shù)和仍不足100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: 與圓相交的弦長等于橢圓: ()的焦距長.
(1)求橢圓的方程;
(2)已知為原點(diǎn),橢圓與拋物線()交于、兩點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),若直線、與軸分別交于、兩點(diǎn),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.
(1)求的值;
(2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 6 | ||
不獲獎(jiǎng) | |||
合計(jì) | 400 |
(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)雙曲線的上焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)為雙曲線虛軸的左端點(diǎn),已知的離心率為,且的面積.
(1)求雙曲線的方程;
(2)設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,動(dòng)直線與相切于點(diǎn),與的準(zhǔn)線相交于點(diǎn),試推斷以線段為直徑的圓是否恒經(jīng)過軸上的某個(gè)定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com