設(shè)a為非負(fù)實數(shù),函數(shù)f(x)=x|x-a|-a.
(Ⅰ)當(dāng)a=2時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)討論函數(shù)y=f(x)的零點個數(shù),并求出零點.(Ⅲ)當(dāng)-1≤x≤1時,|f'(x)|≤1,試求a的最大值,并求a取得最大值時f(x)的表達(dá)式.
分析:(Ⅰ)先把a(bǔ)=2代入,利用絕對值的意義將函數(shù)化簡為分段函數(shù),再對每一段利用二次函數(shù)的單調(diào)區(qū)間和對稱軸的關(guān)系求出每一段的單調(diào)區(qū)間,最后綜合即可求出整個函數(shù)的單調(diào)區(qū)間;
(Ⅱ)討論a的正負(fù),利用二次函數(shù)的單調(diào)性以及函數(shù)的極小值與0進(jìn)行比較,進(jìn)行分別判定函數(shù)y=f(x)的零點個數(shù).
解答:解:(Ⅰ)當(dāng)a=2時,
f(x)=x|x-2|-2=,
①當(dāng)x≥2時,f(x)=x
2-2x-2=(x-1)
2-3,
∴f(x)在(2,+∞)上單調(diào)遞增;
②當(dāng)x<2時,f(x)=-x
2+2x-2=-(x-1)
2-1,
∴f(x)在(1,2)上單調(diào)遞減,在(-∞,1)上單調(diào)遞增;
綜上所述,f(x)的單調(diào)遞增區(qū)間是(-∞,1)和(2,+∞),單調(diào)遞減區(qū)間是(1,2).
(Ⅱ)(1)當(dāng)a=0時,f(x)=x|x|,函數(shù)y=f(x)的零點為x
0=0;(5分)
(2)當(dāng)a>0時,
f(x)=x|x-a|-a=,(6分)
故當(dāng)x≥a時,
f(x)=(x-)2--a,二次函數(shù)對稱軸
x=<a,
∴f(x)在(a,+∞)上單調(diào)遞增,f(a)<0;(7分)
當(dāng)x<a時,
f(x)=-(x-)2+-a,二次函數(shù)對稱軸
x=<a,
∴f(x)在
(,a)上單調(diào)遞減,在
(-∞,)上單調(diào)遞增;(8分)
∴f(x)的極大值為
f()=-()2+a×-a=-a,1°當(dāng)
f()<0,即0<a<4時,函數(shù)f(x)與x軸只有唯一交點,即唯一零點,
由x
2-ax-a=0解之得
函數(shù)y=f(x)的零點為
x0=或
x0=(舍去);
(10分)2°當(dāng)
f()=0,即a=4時,函數(shù)f(x)與x軸有兩個交點,即兩個零點,分別為x
1=2
和
x2==2+2;(11分)3°當(dāng)
f()>0,即a>4時,函數(shù)f(x)與x軸有三個交點,即有三個零點,
由-x
2+ax-a=0解得,
x=,
∴函數(shù)y=f(x)的零點為
x=和
x0=.(12分)
綜上可得,當(dāng)a=0時,函數(shù)的零點為0;
當(dāng)0<a<4時,函數(shù)有一個零點,且零點為
;
當(dāng)a=4時,有兩個零點2和
2+2;
當(dāng)a>4時,函數(shù)有三個零點
點評:本題主要考查通過導(dǎo)數(shù)求函數(shù)的單調(diào)性與函數(shù)的極值;注意函數(shù)中若含參數(shù)一般需要討論.