當(dāng)x取何值時,復(fù)數(shù)z=(x2+x-2)i+(x2+3x+2)i
(1)是實數(shù)?
(2)是純虛數(shù)?
(3)對應(yīng)的點在第四象限?
【答案】分析:(1)利用復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i是實數(shù)時,復(fù)數(shù)的虛部等于0,求出x值.
(2)利用復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i是純虛數(shù)時,復(fù)數(shù)的虛部不等于0,且實部等于0,求出x值.
(3)利用復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i對應(yīng)的點在第四象限時,x2+x-2>0,且x2+3x+2<0,求出x的取值范圍.
解答:解:(1)復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i是實數(shù)時,復(fù)數(shù)的虛部等于0,
即 x2+3x+2=0,解得x=-1 或-2.
(2)復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i是純虛數(shù)時,復(fù)數(shù)的虛部不等于0,且實部等于0,
∴x2+x-2=0,且 x2+3x+2≠0,解得 x=1.
(3)復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i對應(yīng)的點在第四象限時,
x2+x-2>0,且x2+3x+2<0,解得x∈∅,
故不存在實數(shù)x,使復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i對應(yīng)的點在第四象限.
點評:本題考查復(fù)數(shù)的實部、虛部的定義,復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點之間的關(guān)系,以及第四象限內(nèi)的點的坐標(biāo)的特點.