A. | (-cosθ,sinθ) | B. | (cosθ,-sinθ) | C. | (-sinθ,cosθ) | D. | (sinθ,-cosθ) |
分析 由題意利用任意角的三角函數(shù)的定義,誘導(dǎo)公式,求得點B的坐標(biāo).
解答 解:A為單位圓上一點,以x軸為始邊,OA為終邊的角為θ(θ≠kπ+$\frac{π}{2}$,k∈Z),
若將OA繞O點順時針旋轉(zhuǎn)$\frac{3π}{2}$至OB,則點B的橫坐標(biāo)為cos(-$\frac{3π}{2}$+θ)=-sinθ,
點B的縱坐標(biāo)為sin(-$\frac{3π}{2}$+θ)=cosθ,故點B的坐標(biāo)為(-sinθ,cosθ),
故選:C.
點評 本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 因為銅、鐵、鋁、金、銀等金屬能導(dǎo)電,所有一切金屬都能導(dǎo)電 | |
B. | 一切奇數(shù)都不能被2整除,(250+1)是奇數(shù),所以(250+1)不能被2整除 | |
C. | 在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$可以計算出a2=$\frac{1}{2}$,a3=$\frac{1}{3}$,a4=$\frac{1}{4}$,所以推理出an=$\frac{1}{n}$ | |
D. | 若雙曲線的焦距是實軸長的2倍,則此雙曲線的離心率為2,類似的,若橢圓的焦距是長軸長的一半,則此橢圓的離心率為$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 10 | C. | 9 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com